These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 37450158)
1. A Data-Driven Signaling Network Inference Approach for Phosphoproteomics. Madison I; Amin F; Song K; Sozzani R; Van den Broeck L Methods Mol Biol; 2023; 2690():335-354. PubMed ID: 37450158 [TBL] [Abstract][Full Text] [Related]
2. Phosphoproteomic analysis reveals interconnected system-wide responses to perturbations of kinases and phosphatases in yeast. Bodenmiller B; Wanka S; Kraft C; Urban J; Campbell D; Pedrioli PG; Gerrits B; Picotti P; Lam H; Vitek O; Brusniak MY; Roschitzki B; Zhang C; Shokat KM; Schlapbach R; Colman-Lerner A; Nolan GP; Nesvizhskii AI; Peter M; Loewith R; von Mering C; Aebersold R Sci Signal; 2010 Dec; 3(153):rs4. PubMed ID: 21177495 [TBL] [Abstract][Full Text] [Related]
3. The coming of age of phosphoproteomics--from large data sets to inference of protein functions. Roux PP; Thibault P Mol Cell Proteomics; 2013 Dec; 12(12):3453-64. PubMed ID: 24037665 [TBL] [Abstract][Full Text] [Related]
4. Phosphoproteomic Approaches for Identifying Phosphatase and Kinase Substrates. DeMarco AG; Hall MC Molecules; 2023 Apr; 28(9):. PubMed ID: 37175085 [TBL] [Abstract][Full Text] [Related]
5. Reconstruction of global regulatory network from signaling to cellular functions using phosphoproteomic data. Kawata K; Yugi K; Hatano A; Kokaji T; Tomizawa Y; Fujii M; Uda S; Kubota H; Matsumoto M; Nakayama KI; Kuroda S Genes Cells; 2019 Jan; 24(1):82-93. PubMed ID: 30417516 [TBL] [Abstract][Full Text] [Related]
6. Functional annotation of proteins for signaling network inference in non-model species. Van den Broeck L; Bhosale DK; Song K; Fonseca de Lima CF; Ashley M; Zhu T; Zhu S; Van De Cotte B; Neyt P; Ortiz AC; Sikes TR; Aper J; Lootens P; Locke AM; De Smet I; Sozzani R Nat Commun; 2023 Aug; 14(1):4654. PubMed ID: 37537196 [TBL] [Abstract][Full Text] [Related]
7. Investigation of Proteomic and Phosphoproteomic Responses to Signaling Network Perturbations Reveals Functional Pathway Organizations in Yeast. Li J; Paulo JA; Nusinow DP; Huttlin EL; Gygi SP Cell Rep; 2019 Nov; 29(7):2092-2104.e4. PubMed ID: 31722220 [TBL] [Abstract][Full Text] [Related]
8. Phosphoproteomics-based network medicine. Liu Z; Wang Y; Xue Y FEBS J; 2013 Nov; 280(22):5696-704. PubMed ID: 23751130 [TBL] [Abstract][Full Text] [Related]
10. Phosphoproteomic analysis of protein phosphorylation networks in Tetrahymena thermophila, a model single-celled organism. Tian M; Chen X; Xiong Q; Xiong J; Xiao C; Ge F; Yang F; Miao W Mol Cell Proteomics; 2014 Feb; 13(2):503-19. PubMed ID: 24200585 [TBL] [Abstract][Full Text] [Related]
11. Targeted phosphoproteomics of insulin signaling using data-independent acquisition mass spectrometry. Parker BL; Yang G; Humphrey SJ; Chaudhuri R; Ma X; Peterman S; James DE Sci Signal; 2015 Jun; 8(380):rs6. PubMed ID: 26060331 [TBL] [Abstract][Full Text] [Related]
13. Proteomic analysis of integrin alphaIIbbeta3 outside-in signaling reveals Src-kinase-independent phosphorylation of Dok-1 and Dok-3 leading to SHIP-1 interactions. Senis YA; Antrobus R; Severin S; Parguiña AF; Rosa I; Zitzmann N; Watson SP; García A J Thromb Haemost; 2009 Oct; 7(10):1718-26. PubMed ID: 19682241 [TBL] [Abstract][Full Text] [Related]
14. Large-scale functional analysis of the roles of phosphorylation in yeast metabolic pathways. Schulz JC; Zampieri M; Wanka S; von Mering C; Sauer U Sci Signal; 2014 Nov; 7(353):rs6. PubMed ID: 25429078 [TBL] [Abstract][Full Text] [Related]
15. Phosphoproteomics: Protein Phosphorylation in Regulation of Seed Germination and Plant Growth. Yin X; Wang X; Komatsu S Curr Protein Pept Sci; 2018 Feb; 19(4):401-412. PubMed ID: 28190389 [TBL] [Abstract][Full Text] [Related]
16. Quantitative Label-Free Phosphoproteomics Reveals Differentially Regulated Protein Phosphorylation Involved in West Nile Virus-Induced Host Inflammatory Response. Zhang H; Sun J; Ye J; Ashraf U; Chen Z; Zhu B; He W; Xu Q; Wei Y; Chen H; Fu ZF; Liu R; Cao S J Proteome Res; 2015 Dec; 14(12):5157-68. PubMed ID: 26485063 [TBL] [Abstract][Full Text] [Related]
17. Revealing plant defense signaling: getting more sophisticated with phosphoproteomics. Xing T; Laroche A Plant Signal Behav; 2011 Oct; 6(10):1469-74. PubMed ID: 21897123 [TBL] [Abstract][Full Text] [Related]
18. Phosphoproteomic Analysis of Rat Neutrophils Shows the Effect of Intestinal Ischemia/Reperfusion and Preconditioning on Kinases and Phosphatases. Tahir M; Arshid S; Fontes B; S Castro M; Sidoli S; Schwämmle V; Luz IS; Roepstorff P; Fontes W Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32823483 [TBL] [Abstract][Full Text] [Related]
19. Integration of phosphoproteomic, chemical, and biological strategies for the functional analysis of targeted protein phosphorylation. Guo M; Huang BX Proteomics; 2013 Feb; 13(3-4):424-37. PubMed ID: 23125184 [TBL] [Abstract][Full Text] [Related]
20. Quantitative phosphoproteomic analyses provide evidence for extensive phosphorylation of regulatory proteins in the rhizobia-legume symbiosis. Zhang Z; Ke D; Hu M; Zhang C; Deng L; Li Y; Li J; Zhao H; Cheng L; Wang L; Yuan H Plant Mol Biol; 2019 Jun; 100(3):265-283. PubMed ID: 30989446 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]