These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 37450272)

  • 1. Surface polarization enhances ionic transport and correlations in electrolyte solutions nanoconfined by conductors.
    Jiménez-Ángeles F; Ehlen A; Olvera de la Cruz M
    Faraday Discuss; 2023 Oct; 246(0):576-591. PubMed ID: 37450272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ion correlation forces between uncharged dielectric walls.
    Wernersson E; Kjellander R
    J Chem Phys; 2008 Oct; 129(14):144701. PubMed ID: 19045159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finding Infinities in Nanoconfined Geothermal Electrolyte Static Dielectric Properties and Implications on Ion Adsorption/Pairing.
    Leung K
    Nano Lett; 2023 Oct; 23(19):8868-8874. PubMed ID: 37531607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Confined Water's Dielectric Constant Reduction Is Due to the Surrounding Low Dielectric Media and Not to Interfacial Molecular Ordering.
    Olivieri JF; Hynes JT; Laage D
    J Phys Chem Lett; 2021 May; 12(17):4319-4326. PubMed ID: 33914550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular streaming and its voltage control in ångström-scale channels.
    Mouterde T; Keerthi A; Poggioli AR; Dar SA; Siria A; Geim AK; Bocquet L; Radha B
    Nature; 2019 Mar; 567(7746):87-90. PubMed ID: 30842639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ionic Behavior in Highly Concentrated Aqueous Solutions Nanoconfined between Discretely Charged Silicon Surfaces.
    Qiu Y; Ma J; Chen Y
    Langmuir; 2016 May; 32(19):4806-14. PubMed ID: 27137990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating the abnormal conductivity behaviour of divalent cations in low dielectric constant tetraglyme-based electrolytes.
    Nguyen LHB; Picard T; Iojoiu C; Alloin F; Sergent N; Doublet ML; Filhol JS
    Phys Chem Chem Phys; 2022 Sep; 24(36):21601-21611. PubMed ID: 36004582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanofluidic Charge Transport under Strong Electrostatic Coupling Conditions.
    Buyukdagli S
    J Phys Chem B; 2020 Dec; 124(49):11299-11309. PubMed ID: 33231451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variational approach for electrolyte solutions: from dielectric interfaces to charged nanopores.
    Buyukdagli S; Manghi M; Palmeri J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041601. PubMed ID: 20481729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exchange Process in the Dielectric Loss of Molecular and Macromolecular Ionic Conductors in the Interfacial Layers Formed by Electrode Polarization Effects.
    Samet M; Kallel A; Kallel-Elloumi A; Drockenmuller E; Serghei A
    J Phys Chem B; 2019 Oct; 123(40):8532-8542. PubMed ID: 31566972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electroosmotic Flow Grows with Electrostatic Coupling in Confining Charged Dielectric Surfaces.
    Telles IM; Dos Santos AP
    Langmuir; 2021 Feb; 37(6):2104-2110. PubMed ID: 33534585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduced Ionic Conductivity but Enhanced Local Ionic Conductivity in Nanochannels.
    Zhou K; Jiao S; Chen Y; Qin H; Liu Y
    Langmuir; 2021 Nov; 37(43):12577-12585. PubMed ID: 34672598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does an electronic continuum correction improve effective short-range ion-ion interactions in aqueous solution?
    Bruce EE; van der Vegt NFA
    J Chem Phys; 2018 Jun; 148(22):222816. PubMed ID: 29907065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption of Molecules on a Charged Polarizable Surface in an Electrolyte.
    Wilson WD; Schaldach CM
    J Colloid Interface Sci; 1998 Dec; 208(2):546-554. PubMed ID: 9845699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Image charges and dispersion forces in electric double layers: the dependence of wall-wall interactions on salt concentration and surface charge density.
    Wernersson E; Kjellander R
    J Phys Chem B; 2007 Dec; 111(51):14279-84. PubMed ID: 18027918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interference of electrical double layers: Confinement effects on structure, dynamics, and screening of ionic liquids.
    Park S; McDaniel JG
    J Chem Phys; 2020 Feb; 152(7):074709. PubMed ID: 32087657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoconfinement in Slit Pores Enhances Water Self-Dissociation.
    Muñoz-Santiburcio D; Marx D
    Phys Rev Lett; 2017 Aug; 119(5):056002. PubMed ID: 28949727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Confinement of aqueous mixtures of ionic liquids between amorphous TiO
    Mohammadpour F; Heydari Dokoohaki M; Zolghadr AR; Ghatee MH; Moradi M
    Phys Chem Chem Phys; 2018 Nov; 20(46):29493-29502. PubMed ID: 30456396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hierarchical thermal transport in nanoconfined water.
    Zhao Z; Zhou R; Sun C
    J Chem Phys; 2020 Dec; 153(23):234701. PubMed ID: 33353331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Design and Preparation of Protein-Based Soft Ionic Conductors with Tunable Properties.
    Yu X; Hu Y; Shi H; Sun Z; Li J; Liu H; Lyu H; Xia J; Meng J; Lu X; Yeo J; Lu Q; Guo C
    ACS Appl Mater Interfaces; 2022 Oct; 14(42):48061-48071. PubMed ID: 36245137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.