BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 37450380)

  • 1. The bone marrow stroma in human myelodysplastic syndrome reveals alterations that regulate disease progression.
    Kfoury YS; Ji F; Jain E; Mazzola M; Schiroli G; Papazian A; Mercier F; Sykes DB; Kiem A; Randolph M; Calvi LM; Abdel-Wahab O; Sadreyev RI; Scadden DT
    Blood Adv; 2023 Nov; 7(21):6608-6623. PubMed ID: 37450380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bone marrow niche in the myelodysplastic syndromes.
    Cogle CR; Saki N; Khodadi E; Li J; Shahjahani M; Azizidoost S
    Leuk Res; 2015 Oct; 39(10):1020-7. PubMed ID: 26276090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The bone marrow stem stromal imbalance--a key feature of disease progression in case of myelodysplastic mouse model.
    Das M; Chatterjee S; Basak P; Das P; Pereira JA; Dutta RK; Chaklader M; Chaudhuri S; Law S
    J Stem Cells; 2010; 5(2):49-64. PubMed ID: 22049615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting of the bone marrow microenvironment improves outcome in a murine model of myelodysplastic syndrome.
    Balderman SR; Li AJ; Hoffman CM; Frisch BJ; Goodman AN; LaMere MW; Georger MA; Evans AG; Liesveld JL; Becker MW; Calvi LM
    Blood; 2016 Feb; 127(5):616-25. PubMed ID: 26637787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CXCL12+ stromal cells as bone marrow niche for CD34+ hematopoietic cells and their association with disease progression in myelodysplastic syndromes.
    Abe-Suzuki S; Kurata M; Abe S; Onishi I; Kirimura S; Nashimoto M; Murayama T; Hidaka M; Kitagawa M
    Lab Invest; 2014 Nov; 94(11):1212-23. PubMed ID: 25199050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mesenchymal Stem and Progenitor Cells in Normal and Dysplastic Hematopoiesis-Masters of Survival and Clonality?
    Pleyer L; Valent P; Greil R
    Int J Mol Sci; 2016 Jun; 17(7):. PubMed ID: 27355944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The functional interplay of transcription factors and cell adhesion molecules in experimental myelodysplasia including hematopoietic stem progenitor compartment.
    Daw S; Law S
    Mol Cell Biochem; 2021 Feb; 476(2):535-551. PubMed ID: 33011884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inappropriate Notch activity and limited mesenchymal stem cell plasticity in the bone marrow of patients with myelodysplastic syndromes.
    Varga G; Kiss J; Várkonyi J; Vas V; Farkas P; Pálóczi K; Uher F
    Pathol Oncol Res; 2007; 13(4):311-9. PubMed ID: 18158566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Cytogenetic characteristics of hematopoietic and stromal progenitor cells in myelodysplastic syndrome].
    Pimenova MA; Parovichnikova EN; Kokhno AV; Domracheva EV; Manakova TE; Mal'tseva IuS; Konnova ML; Shishigina LA; Savchenko VG
    Ter Arkh; 2013; 85(7):34-42. PubMed ID: 24137945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The immunological role of mesenchymal stromal cells in patients with myelodysplastic syndrome.
    Zheng L; Zhang L; Guo Y; Xu X; Liu Z; Yan Z; Fu R
    Front Immunol; 2022; 13():1078421. PubMed ID: 36569863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Progressive genomic instability in the Nup98-HoxD13 model of MDS correlates with loss of the PIG-A gene product.
    Byrne M; Bennett RL; Cheng X; May WS
    Neoplasia; 2014 Aug; 16(8):627-33. PubMed ID: 25220590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Myelodysplastic syndromes disable human CD271+VCAM1+CD146+ niches supporting normal hematopoietic stem/progenitor cells.
    Kawano Y; Kawano H; Ghoneim D; Fountaine TJ; Byun DK; LaMere MW; Mendler JH; Ho TC; Salama NA; Myers JR; Hussein SE; Frisch BJ; Ashton JM; Azadniv M; Liesveld JL; Kfoury Y; Scadden DT; Becker MW; Calvi LM
    bioRxiv; 2023 Apr; ():. PubMed ID: 37066307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The microenvironment in myelodysplastic syndromes: Niche-mediated disease initiation and progression.
    Li AJ; Calvi LM
    Exp Hematol; 2017 Nov; 55():3-18. PubMed ID: 28826860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone marrow stromal cells from MDS and AML patients show increased adipogenic potential with reduced Delta-like-1 expression.
    Weickert MT; Hecker JS; Buck MC; Schreck C; Rivière J; Schiemann M; Schallmoser K; Bassermann F; Strunk D; Oostendorp RAJ; Götze KS
    Sci Rep; 2021 Mar; 11(1):5944. PubMed ID: 33723276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biologic characteristics of bone marrow mesenchymal stem cells in myelodysplastic syndromes.
    Kastrinaki MC; Pontikoglou C; Klaus M; Stavroulaki E; Pavlaki K; Papadaki HA
    Curr Stem Cell Res Ther; 2011 Jun; 6(2):122-30. PubMed ID: 20528751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epigenetically Aberrant Stroma in MDS Propagates Disease via Wnt/β-Catenin Activation.
    Bhagat TD; Chen S; Bartenstein M; Barlowe AT; Von Ahrens D; Choudhary GS; Tivnan P; Amin E; Marcondes AM; Sanders MA; Hoogenboezem RM; Kambhampati S; Ramachandra N; Mantzaris I; Sukrithan V; Laurence R; Lopez R; Bhagat P; Giricz O; Sohal D; Wickrema A; Yeung C; Gritsman K; Aplan P; Hochedlinger K; Yu Y; Pradhan K; Zhang J; Greally JM; Mukherjee S; Pellagatti A; Boultwood J; Will B; Steidl U; Raaijmakers MHGP; Deeg HJ; Kharas MG; Verma A
    Cancer Res; 2017 Sep; 77(18):4846-4857. PubMed ID: 28684528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fas ligand expression in the bone marrow in myelodysplastic syndromes correlates with FAB subtype and anemia, and predicts survival.
    Gupta P; Niehans GA; LeRoy SC; Gupta K; Morrison VA; Schultz C; Knapp DJ; Kratzke RA
    Leukemia; 1999 Jan; 13(1):44-53. PubMed ID: 10049059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aging- and Senescence-associated Changes of Mesenchymal Stromal Cells in Myelodysplastic Syndromes.
    Mattiucci D; Maurizi G; Leoni P; Poloni A
    Cell Transplant; 2018 May; 27(5):754-764. PubMed ID: 29682980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone marrow oxidative stress and specific antioxidant signatures in myelodysplastic syndromes.
    Picou F; Vignon C; Debeissat C; Lachot S; Kosmider O; Gallay N; Foucault A; Estienne MH; Ravalet N; Bene MC; Domenech J; Gyan E; Fontenay M; Herault O
    Blood Adv; 2019 Dec; 3(24):4271-4279. PubMed ID: 31869414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coexistence of aberrant hematopoietic and stromal elements in myelodysplastic syndromes.
    Abbas S; Kini A; Srivastava VM; M MT; Nair SC; Abraham A; Mathews V; George B; Kumar S; Venkatraman A; Srivastava A
    Blood Cells Mol Dis; 2017 Jul; 66():37-46. PubMed ID: 28822917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.