BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 37450380)

  • 21. KDM6B overexpression activates innate immune signaling and impairs hematopoiesis in mice.
    Wei Y; Zheng H; Bao N; Jiang S; Bueso-Ramos CE; Khoury J; Class C; Lu Y; Lin K; Yang H; Ganan-Gomez I; Starczynowski DT; Do KA; Colla S; Garcia-Manero G
    Blood Adv; 2018 Oct; 2(19):2491-2504. PubMed ID: 30275007
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biology of the bone marrow microenvironment and myelodysplastic syndromes.
    Rankin EB; Narla A; Park JK; Lin S; Sakamoto KM
    Mol Genet Metab; 2015; 116(1-2):24-8. PubMed ID: 26210353
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A systematic modeling study on the pathogenic role of p38 MAPK activation in myelodysplastic syndromes.
    Peng H; Wen J; Zhang L; Li H; Chang CC; Zu Y; Zhou X
    Mol Biosyst; 2012 Apr; 8(4):1366-74. PubMed ID: 22327869
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Common and different alterations of bone marrow mesenchymal stromal cells in myelodysplastic syndrome and multiple myeloma.
    Choi H; Kim Y; Kang D; Kwon A; Kim J; Min Kim J; Park SS; Kim YJ; Min CK; Kim M
    Cell Prolif; 2020 May; 53(5):e12819. PubMed ID: 32372504
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Research Progress on Gene Expression Abnormality of Hematopoietic Stem/Progenitor Cells in Myelodysplastic Syndromes].
    Zhang J; Ma Y; Xu XP
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2015 Oct; 23(5):1497-503. PubMed ID: 26524065
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fas/Apo-1 (CD95) expression and apoptosis in patients with myelodysplastic syndromes.
    Bouscary D; De Vos J; Guesnu M; Jondeau K; Viguier F; Melle J; Picard F; Dreyfus F; Fontenay-Roupie M
    Leukemia; 1997 Jun; 11(6):839-45. PubMed ID: 9177438
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differential expression of AURKA and AURKB genes in bone marrow stromal mesenchymal cells of myelodysplastic syndrome: correlation with G-banding analysis and FISH.
    Oliveira FM; Lucena-Araujo AR; Favarin Mdo C; Palma PV; Rego EM; Falcão RP; Covas DT; Fontes AM
    Exp Hematol; 2013 Feb; 41(2):198-208. PubMed ID: 23092930
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Oncogenic
    Osswald L; Hamarsheh S; Uhl FM; Andrieux G; Klein C; Dierks C; Duquesne S; Braun LM; Schmitt-Graeff A; Duyster J; Boerries M; Brummer T; Zeiser R
    Mol Cancer Res; 2021 Sep; 19(9):1596-1608. PubMed ID: 34088868
    [TBL] [Abstract][Full Text] [Related]  

  • 29. GATA-1 transcription factor is up-regulated in bone marrow hematopoietic progenitor CD34(+) and erythroid CD71(+) cells in myelodysplastic syndromes.
    Maratheftis CI; Bolaraki PE; Voulgarelis M
    Am J Hematol; 2007 Oct; 82(10):887-92. PubMed ID: 17570514
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Use of Hematopoietic Stem Cell Transplantation to Assess the Origin of Myelodysplastic Syndrome.
    Chung YJ; Khawaja G; Wolcott KM; Aplan PD
    J Vis Exp; 2018 Oct; (140):. PubMed ID: 30346380
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Beyond the Niche: Myelodysplastic Syndrome Topobiology in the Laboratory and in the Clinic.
    Flores-Figueroa E; Gratzinger D
    Int J Mol Sci; 2016 Apr; 17(4):553. PubMed ID: 27089321
    [TBL] [Abstract][Full Text] [Related]  

  • 32. NUP98-HOXD13 transgenic mice develop a highly penetrant, severe myelodysplastic syndrome that progresses to acute leukemia.
    Lin YW; Slape C; Zhang Z; Aplan PD
    Blood; 2005 Jul; 106(1):287-95. PubMed ID: 15755899
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Benzene exposure--an experimental machinery for induction of myelodysplastic syndrome: stem cell and stem cell niche analysis in the bone marrow.
    Das M; Chaudhuri S; Law S
    J Stem Cells; 2012; 7(1):43-59. PubMed ID: 23550343
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Remodeled CD146
    Chen C; Zhang M; Li R; Yuan J; Yan J; Zhang Y; Xing W; Bai J; Zhou Y
    Stem Cell Rev Rep; 2023 Feb; 19(2):406-416. PubMed ID: 36018465
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Loss of p53 accelerates the complications of myelodysplastic syndrome in a NUP98-HOXD13-driven mouse model.
    Xu H; Menendez S; Schlegelberger B; Bae N; Aplan PD; Göhring G; Deblasio TR; Nimer SD
    Blood; 2012 Oct; 120(15):3089-97. PubMed ID: 22927245
    [TBL] [Abstract][Full Text] [Related]  

  • 36.
    Smeets MF; Tan SY; Xu JJ; Anande G; Unnikrishnan A; Chalk AM; Taylor SR; Pimanda JE; Wall M; Purton LE; Walkley CR
    Blood; 2018 Aug; 132(6):608-621. PubMed ID: 29903888
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Distinctive contact between CD34+ hematopoietic progenitors and CXCL12+ CD271+ mesenchymal stromal cells in benign and myelodysplastic bone marrow.
    Flores-Figueroa E; Varma S; Montgomery K; Greenberg PL; Gratzinger D
    Lab Invest; 2012 Sep; 92(9):1330-41. PubMed ID: 22710983
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessment of stromal function, and its potential contribution to deregulation of hematopoiesis in the myelodysplastic syndromes.
    Tauro S; Hepburn MD; Bowen DT; Pippard MJ
    Haematologica; 2001 Oct; 86(10):1038-45. PubMed ID: 11602409
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mesenchymal Inflammation Drives Genotoxic Stress in Hematopoietic Stem Cells and Predicts Disease Evolution in Human Pre-leukemia.
    Zambetti NA; Ping Z; Chen S; Kenswil KJG; Mylona MA; Sanders MA; Hoogenboezem RM; Bindels EMJ; Adisty MN; Van Strien PMH; van der Leije CS; Westers TM; Cremers EMP; Milanese C; Mastroberardino PG; van Leeuwen JPTM; van der Eerden BCJ; Touw IP; Kuijpers TW; Kanaar R; van de Loosdrecht AA; Vogl T; Raaijmakers MHGP
    Cell Stem Cell; 2016 Nov; 19(5):613-627. PubMed ID: 27666011
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Physician Education: Myelodysplastic Syndrome.
    Yoshida Y
    Oncologist; 1996; 1(4):284-287. PubMed ID: 10388004
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.