BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 37450587)

  • 1. Structural basis for the ubiquitination of G protein βγ subunits by KCTD5/Cullin3 E3 ligase.
    Jiang W; Wang W; Kong Y; Zheng S
    Sci Adv; 2023 Jul; 9(28):eadg8369. PubMed ID: 37450587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and dynamics of a pentameric KCTD5/CUL3/Gβγ E3 ubiquitin ligase complex.
    Nguyen DM; Rath DH; Devost D; Pétrin D; Rizk R; Ji AX; Narayanan N; Yong D; Zhai A; Kuntz DA; Mian MUQ; Pomroy NC; Keszei AFA; Benlekbir S; Mazhab-Jafari MT; Rubinstein JL; Hébert TE; Privé GG
    Proc Natl Acad Sci U S A; 2024 Apr; 121(17):e2315018121. PubMed ID: 38625940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human Multisubunit E3 Ubiquitin Ligase Required for Heterotrimeric G-Protein β-Subunit Ubiquitination and Downstream Signaling.
    Young BD; Sha J; Vashisht AA; Wohlschlegel JA
    J Proteome Res; 2021 Sep; 20(9):4318-4330. PubMed ID: 34342229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular recognition of Cullin3 by KCTDs: insights from experimental and computational investigations.
    Balasco N; Pirone L; Smaldone G; Di Gaetano S; Esposito L; Pedone EM; Vitagliano L
    Biochim Biophys Acta; 2014 Jul; 1844(7):1289-98. PubMed ID: 24747150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural complexity in the KCTD family of Cullin3-dependent E3 ubiquitin ligases.
    Pinkas DM; Sanvitale CE; Bufton JC; Sorrell FJ; Solcan N; Chalk R; Doutch J; Bullock AN
    Biochem J; 2017 Nov; 474(22):3747-3761. PubMed ID: 28963344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. KCTD5, a putative substrate adaptor for cullin3 ubiquitin ligases.
    Bayón Y; Trinidad AG; de la Puerta ML; Del Carmen Rodríguez M; Bogetz J; Rojas A; De Pereda JM; Rahmouni S; Williams S; Matsuzawa S; Reed JC; Crespo MS; Mustelin T; Alonso A
    FEBS J; 2008 Aug; 275(15):3900-10. PubMed ID: 18573101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural Insights into KCTD Protein Assembly and Cullin3 Recognition.
    Ji AX; Chu A; Nielsen TK; Benlekbir S; Rubinstein JL; Privé GG
    J Mol Biol; 2016 Jan; 428(1):92-107. PubMed ID: 26334369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A conserved N-terminal motif of CUL3 contributes to assembly and E3 ligase activity of CRL3
    Wang W; Liang L; Dai Z; Zuo P; Yu S; Lu Y; Ding D; Chen H; Shan H; Jin Y; Mao Y; Yin Y
    Nat Commun; 2024 May; 15(1):3789. PubMed ID: 38710693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cullin 3/KCTD5 Promotes the Ubiqutination of Rho Guanine Nucleotide Dissociation Inhibitor 1 and Regulates Its Stability.
    Cho HJ; Ryu KJ; Baek KE; Lim J; Kim T; Song CY; Yoo J; Lee HG
    J Microbiol Biotechnol; 2020 Oct; 30(10):1488-1494. PubMed ID: 32876072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions of cullin3/KCTD5 complexes with both cytoplasmic and nuclear proteins: Evidence for a role in protein stabilization.
    Rutz N; Heilbronn R; Weger S
    Biochem Biophys Res Commun; 2015 Aug; 464(3):922-8. PubMed ID: 26188516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cryo-EM structure of the KLHL22 E3 ligase bound to an oligomeric metabolic enzyme.
    Teng F; Wang Y; Liu M; Tian S; Stjepanovic G; Su MY
    Structure; 2023 Nov; 31(11):1431-1440.e5. PubMed ID: 37788672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular organization of the cullin E3 ligase adaptor KCTD11.
    Correale S; Pirone L; Di Marcotullio L; De Smaele E; Greco A; Mazzà D; Moretti M; Alterio V; Vitagliano L; Di Gaetano S; Gulino A; Pedone EM
    Biochimie; 2011 Apr; 93(4):715-24. PubMed ID: 21237243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of cullin3 E3 ubiquitin ligase dimerization.
    Choo YY; Hagen T
    PLoS One; 2012; 7(7):e41350. PubMed ID: 22911784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cullin3/KCTD5 induces monoubiquitination of ΔNp63α and impairs its activity.
    He H; Peng Y; Fan S; Chen Y; Zheng X; Li C
    FEBS Lett; 2018 Jul; 592(13):2334-2340. PubMed ID: 29782646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The ubiquitin conjugating enzyme, UbcM2, engages in novel interactions with components of cullin-3 based E3 ligases.
    Plafker KS; Singer JD; Plafker SM
    Biochemistry; 2009 Apr; 48(15):3527-37. PubMed ID: 19256485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The functions and effects of CUL3-E3 ligases mediated non-degradative ubiquitination.
    Zhai F; Li J; Ye M; Jin X
    Gene; 2022 Jul; 832():146562. PubMed ID: 35580799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple potassium channel tetramerization domain (KCTD) family members interact with Gβγ, with effects on cAMP signaling.
    Sloan DC; Cryan CE; Muntean BS
    J Biol Chem; 2023 Mar; 299(3):102924. PubMed ID: 36736897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rotavirus NSP1 Associates with Components of the Cullin RING Ligase Family of E3 Ubiquitin Ligases.
    Lutz LM; Pace CR; Arnold MM
    J Virol; 2016 Jul; 90(13):6036-48. PubMed ID: 27099313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel Cul3 binding proteins function to remodel E3 ligase complexes.
    Wimuttisuk W; West M; Davidge B; Yu K; Salomon A; Singer JD
    BMC Cell Biol; 2014 Jul; 15():28. PubMed ID: 25011449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PEST sequences mediate heat shock factor 2 turnover by interacting with the Cul3 subunit of the Cul3-RING ubiquitin ligase.
    Xing H; Hong Y; Sarge KD
    Cell Stress Chaperones; 2010 May; 15(3):301-8. PubMed ID: 19768582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.