BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 37450593)

  • 1. Genome-wide CRISPR screens define determinants of epithelial-mesenchymal transition mediated immune evasion by pancreatic cancer cells.
    Gu Y; Zhang Z; Camps MGM; Ossendorp F; Wijdeven RH; Ten Dijke P
    Sci Adv; 2023 Jul; 9(28):eadf9915. PubMed ID: 37450593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complementary CRISPR screen highlights the contrasting role of membrane-bound and soluble ICAM-1 in regulating antigen-specific tumor cell killing by cytotoxic T cells.
    Herzfeldt AK; Gamez MP; Martin E; Boryn LM; Baskaran P; Huber HJ; Schuler M; Park JE; Swee LK
    Elife; 2023 Sep; 12():. PubMed ID: 37732732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional genomic landscape of cancer-intrinsic evasion of killing by T cells.
    Lawson KA; Sousa CM; Zhang X; Kim E; Akthar R; Caumanns JJ; Yao Y; Mikolajewicz N; Ross C; Brown KR; Zid AA; Fan ZP; Hui S; Krall JA; Simons DM; Slater CJ; De Jesus V; Tang L; Singh R; Goldford JE; Martin S; Huang Q; Francis EA; Habsid A; Climie R; Tieu D; Wei J; Li R; Tong AHY; Aregger M; Chan KS; Han H; Wang X; Mero P; Brumell JH; Finelli A; Ailles L; Bader G; Smolen GA; Kingsbury GA; Hart T; Kung C; Moffat J
    Nature; 2020 Oct; 586(7827):120-126. PubMed ID: 32968282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tumor immune evasion arises through loss of TNF sensitivity.
    Kearney CJ; Vervoort SJ; Hogg SJ; Ramsbottom KM; Freeman AJ; Lalaoui N; Pijpers L; Michie J; Brown KK; Knight DA; Sutton V; Beavis PA; Voskoboinik I; Darcy PK; Silke J; Trapani JA; Johnstone RW; Oliaro J
    Sci Immunol; 2018 May; 3(23):. PubMed ID: 29776993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo CRISPR screens reveal the landscape of immune evasion pathways across cancer.
    Dubrot J; Du PP; Lane-Reticker SK; Kessler EA; Muscato AJ; Mehta A; Freeman SS; Allen PM; Olander KE; Ockerman KM; Wolfe CH; Wiesmann F; Knudsen NH; Tsao HW; Iracheta-Vellve A; Schneider EM; Rivera-Rosario AN; Kohnle IC; Pope HW; Ayer A; Mishra G; Zimmer MD; Kim SY; Mahapatra A; Ebrahimi-Nik H; Frederick DT; Boland GM; Haining WN; Root DE; Doench JG; Hacohen N; Yates KB; Manguso RT
    Nat Immunol; 2022 Oct; 23(10):1495-1506. PubMed ID: 36151395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A CRISPR activation screen identifies MUC-21 as critical for resistance to NK and T cell-mediated cytotoxicity.
    Lee DH; Ahn H; Sim HI; Choi E; Choi S; Jo Y; Yun B; Song HK; Oh SJ; Denda-Nagai K; Park CS; Irimura T; Park Y; Jin HS
    J Exp Clin Cancer Res; 2023 Oct; 42(1):272. PubMed ID: 37858248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cancer cell-intrinsic resistance to BiTE therapy is mediated by loss of CD58 costimulation and modulation of the extrinsic apoptotic pathway.
    Shen Y; Eng JS; Fajardo F; Liang L; Li C; Collins P; Tedesco D; Nolan-Stevaux O
    J Immunother Cancer; 2022 Mar; 10(3):. PubMed ID: 35296559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational Discovery of Cancer Immunotherapy Targets by Intercellular CRISPR Screens.
    Yim S; Hwang W; Han N; Lee D
    Front Immunol; 2022; 13():884561. PubMed ID: 35651625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A High-Throughput Immune-Oncology Screen Identifies EGFR Inhibitors as Potent Enhancers of Antigen-Specific Cytotoxic T-lymphocyte Tumor Cell Killing.
    Lizotte PH; Hong RL; Luster TA; Cavanaugh ME; Taus LJ; Wang S; Dhaneshwar A; Mayman N; Yang A; Kulkarni M; Badalucco L; Fitzpatrick E; Kao HF; Kuraguchi M; Bittinger M; Kirschmeier PT; Gray NS; Barbie DA; Jänne PA
    Cancer Immunol Res; 2018 Dec; 6(12):1511-1523. PubMed ID: 30242021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PD-L1 expression is associated with epithelial-to-mesenchymal transition in adenocarcinoma of the lung.
    Kim S; Koh J; Kim MY; Kwon D; Go H; Kim YA; Jeon YK; Chung DH
    Hum Pathol; 2016 Dec; 58():7-14. PubMed ID: 27473266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. B3GNT3 overexpression promotes tumor progression and inhibits infiltration of CD8
    Zhuang H; Zhou Z; Zhang Z; Chen X; Ma Z; Huang S; Gong Y; Zhang C; Hou B
    Aging (Albany NY); 2020 Dec; 13(2):2310-2329. PubMed ID: 33316775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suppression of the epidermal growth factor receptor inhibits epithelial-mesenchymal transition in human pancreatic cancer PANC-1 cells.
    Chang ZG; Wei JM; Qin CF; Hao K; Tian XD; Xie K; Xie XH; Yang YM
    Dig Dis Sci; 2012 May; 57(5):1181-9. PubMed ID: 22271412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pooled CRISPR screening in pancreatic cancer cells implicates co-repressor complexes as a cause of multiple drug resistance via regulation of epithelial-to-mesenchymal transition.
    Ramaker RC; Hardigan AA; Gordon ER; Wright CA; Myers RM; Cooper SJ
    BMC Cancer; 2021 May; 21(1):632. PubMed ID: 34049503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AXL Targeting Overcomes Human Lung Cancer Cell Resistance to NK- and CTL-Mediated Cytotoxicity.
    Terry S; Abdou A; Engelsen AST; Buart S; Dessen P; Corgnac S; Collares D; Meurice G; Gausdal G; Baud V; Saintigny P; Lorens JB; Thiery JP; Mami-Chouaib F; Chouaib S
    Cancer Immunol Res; 2019 Nov; 7(11):1789-1802. PubMed ID: 31488404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide CRISPR screens identify CD48 defining susceptibility to NK cytotoxicity in peripheral T-cell lymphomas.
    Chiba M; Shimono J; Ishio T; Takei N; Kasahara K; Ogasawara R; Ara T; Goto H; Izumiyama K; Otsuguro S; Perera LP; Hasegawa H; Maeda M; Hashino S; Maenaka K; Teshima T; Waldmann TA; Yang Y; Nakagawa M
    Blood; 2022 Nov; 140(18):1951-1963. PubMed ID: 35921533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myeloid cells are required for PD-1/PD-L1 checkpoint activation and the establishment of an immunosuppressive environment in pancreatic cancer.
    Zhang Y; Velez-Delgado A; Mathew E; Li D; Mendez FM; Flannagan K; Rhim AD; Simeone DM; Beatty GL; Pasca di Magliano M
    Gut; 2017 Jan; 66(1):124-136. PubMed ID: 27402485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. IFN-γ Promotes Epithelial-Mesenchymal Transition and the Expression of PD-L1 in Pancreatic Cancer.
    Imai D; Yoshizumi T; Okano S; Itoh S; Ikegami T; Harada N; Aishima S; Oda Y; Maehara Y
    J Surg Res; 2019 Aug; 240():115-123. PubMed ID: 30927618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RIG-I-like helicases induce immunogenic cell death of pancreatic cancer cells and sensitize tumors toward killing by CD8(+) T cells.
    Duewell P; Steger A; Lohr H; Bourhis H; Hoelz H; Kirchleitner SV; Stieg MR; Grassmann S; Kobold S; Siveke JT; Endres S; Schnurr M
    Cell Death Differ; 2014 Dec; 21(12):1825-37. PubMed ID: 25012502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tumor immune evasion: insights from CRISPR screens and future directions.
    Djajawi TM; Wichmann J; Vervoort SJ; Kearney CJ
    FEBS J; 2024 Apr; 291(7):1386-1399. PubMed ID: 37971319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Tumor Suppressor SASH1 Interacts With the Signal Adaptor CRKL to Inhibit Epithelial-Mesenchymal Transition and Metastasis in Colorectal Cancer.
    Franke FC; Müller J; Abal M; Medina ED; Nitsche U; Weidmann H; Chardonnet S; Ninio E; Janssen KP
    Cell Mol Gastroenterol Hepatol; 2019; 7(1):33-53. PubMed ID: 30480076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.