These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 37450690)
1. Two-Dimensional Graphitic Carbon Nitride for Improving the Performance of Organic Solar Cells. Xia Z; Sun Y; Jiang Y; Chen L; Zhao C; Dai C; Wei Z; Zhang G; Yu Y; Wang H; Zhang Z; Xie J; Zhou S; Zhang Q; Li X; Shuai J; Yang C; Liu S J Phys Chem Lett; 2023 Jul; 14(29):6532-6541. PubMed ID: 37450690 [TBL] [Abstract][Full Text] [Related]
2. Magnetic Nanocomposite Modified Hybrid Hole-Transport Layer for Constructing Organic Solar Cells with High Efficiencies. Bao Y; Feng H; Chen X; Liu Z; Li Z; Wang Y; Zhao B; Liu S; Zhang X; Wu W; Gao C ACS Appl Mater Interfaces; 2024 Oct; 16(40):54081-54091. PubMed ID: 39327723 [TBL] [Abstract][Full Text] [Related]
3. Highly Efficient Organic Solar Cells Enabled by the Incorporation of a Sulfonated Graphene Doped PEDOT:PSS Interlayer. Pei S; Xiong X; Zhong W; Xue X; Zhang M; Hao T; Zhang Y; Liu F; Zhu L ACS Appl Mater Interfaces; 2022 Aug; 14(30):34814-34821. PubMed ID: 35876251 [TBL] [Abstract][Full Text] [Related]
4. Niobium-Carbide MXene Modified Hybrid Hole Transport Layer Enabling High-Performance Organic Solar Cells Over 19. Deng B; Lian H; Xue B; Song R; Chen S; Wang Z; Xu T; Dong H; Wang S Small; 2023 Jun; 19(23):e2207505. PubMed ID: 36890774 [TBL] [Abstract][Full Text] [Related]
6. Facilely Modified Nickel-Based Hole Transporting Layers for Organic Solar Cells with 19.12% Efficiency and Enhanced Stability. Wang Z; Li B; Liu B; Lee JW; Bai Q; Yang W; Wang J; Yang J; Zhang X; Sun H; Yang X; Kim BJ; Guo X Small; 2024 Aug; 20(34):e2400915. PubMed ID: 38597683 [TBL] [Abstract][Full Text] [Related]
7. Solution-Processed PEDOT:PSS/MoS Ramasamy MS; Ryu KY; Lim JW; Bibi A; Kwon H; Lee JE; Kim DH; Kim K Nanomaterials (Basel); 2019 Sep; 9(9):. PubMed ID: 31527441 [TBL] [Abstract][Full Text] [Related]
8. High-quality WS Wang X; Liu P; Yap B; Xia R; Wong WY; He Z Nanoscale; 2021 Oct; 13(39):16589-16597. PubMed ID: 34585178 [TBL] [Abstract][Full Text] [Related]
9. Annealing-Insensitive, Alcohol-Processed MoO Song C; Huang X; Zhan T; Ding L; Li Y; Xue X; Lin X; Peng H; Cai P; Duan C; Chen J ACS Appl Mater Interfaces; 2022 Sep; 14(36):40851-40861. PubMed ID: 36044804 [TBL] [Abstract][Full Text] [Related]
10. Improving the stability of bulk heterojunction solar cells by incorporating pH-neutral PEDOT:PSS as the hole transport layer. Meng Y; Hu Z; Ai N; Jiang Z; Wang J; Peng J; Cao Y ACS Appl Mater Interfaces; 2014 Apr; 6(7):5122-9. PubMed ID: 24611433 [TBL] [Abstract][Full Text] [Related]
11. Li H; Tan J; Yang S; Sun Y; Yu H ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38624163 [TBL] [Abstract][Full Text] [Related]
12. Ti Wang J; Peng R; Gao J; Li D; Xie L; Song W; Zhang X; Fu Y; Ge Z ACS Appl Mater Interfaces; 2021 Sep; 13(38):45789-45797. PubMed ID: 34523906 [TBL] [Abstract][Full Text] [Related]
13. Optical-Electrical-Chemical Engineering of PEDOT:PSS by Incorporation of Hydrophobic Nafion for Efficient and Stable Perovskite Solar Cells. Ma S; Qiao W; Cheng T; Zhang B; Yao J; Alsaedi A; Hayat T; Ding Y; Tan Z; Dai S ACS Appl Mater Interfaces; 2018 Jan; 10(4):3902-3911. PubMed ID: 29308652 [TBL] [Abstract][Full Text] [Related]
14. Co-La-Based Hole-Transporting Layers for Binary Organic Solar Cells with 18.82 % Efficiency. Zhang G; Chen Q; Zhang Z; Fang J; Zhao C; Wei Y; Li W Angew Chem Int Ed Engl; 2023 Jan; 62(4):e202216304. PubMed ID: 36448962 [TBL] [Abstract][Full Text] [Related]
15. Improving the conductivity of PEDOT:PSS hole transport layer in polymer solar cells via copper(II) bromide salt doping. Zhao Z; Wu Q; Xia F; Chen X; Liu Y; Zhang W; Zhu J; Dai S; Yang S ACS Appl Mater Interfaces; 2015 Jan; 7(3):1439-48. PubMed ID: 25536017 [TBL] [Abstract][Full Text] [Related]
16. Boosting Efficiency and Stability of Organic Solar Cells Using Ultralow-Cost BiOCl Nanoplates as Hole Transporting Layers. Liu B; Wang Y; Chen P; Zhang X; Sun H; Tang Y; Liao Q; Huang J; Wang H; Meng H; Guo X ACS Appl Mater Interfaces; 2019 Sep; 11(36):33505-33514. PubMed ID: 31429258 [TBL] [Abstract][Full Text] [Related]
17. Self-Assembled Molecules with Asymmetric Backbone for Highly Stable Binary Organic Solar Cells with 19.7 % Efficiency. Yu X; Ding P; Yang D; Yan P; Wang H; Yang S; Wu J; Wang Z; Sun H; Chen Z; Xie L; Ge Z Angew Chem Int Ed Engl; 2024 Apr; 63(18):e202401518. PubMed ID: 38459749 [TBL] [Abstract][Full Text] [Related]
18. Enhancement of organic solar cells efficiency with acetic acid modulated poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) buffer layers. Oh SH; Heo SJ; Kim HJ J Nanosci Nanotechnol; 2014 Jul; 14(7):5331-4. PubMed ID: 24758027 [TBL] [Abstract][Full Text] [Related]
19. High Efficiency over 18.6% of Organic Solar Cells Enabled by PEDOT:PSS/Br-2PACz Dual-Anode Interface. Zhang J; Jin F; Peng R; Ge J; Guo Y; Qiu Y; Zhou R; Ge Z ACS Appl Mater Interfaces; 2024 Feb; 16(7):9117-9125. PubMed ID: 38330209 [TBL] [Abstract][Full Text] [Related]
20. Influence of Environmentally Affected Hole-Transport Layers on Spatial Homogeneity and Charge-Transport Dynamics of Organic Solar Cells. Chien HT; Pilat F; Griesser T; Fitzek H; Poelt P; Friedel B ACS Appl Mater Interfaces; 2018 Mar; 10(12):10102-10114. PubMed ID: 29488376 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]