These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 37450739)

  • 1. Random number generation using spontaneous symmetry breaking in a Kerr resonator.
    Quinn L; Xu G; Xu Y; Li Z; Fatome J; Murdoch SG; Coen S; Erkintalo M
    Opt Lett; 2023 Jul; 48(14):3741-3744. PubMed ID: 37450739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spontaneous symmetry breaking of dissipative optical solitons in a two-component Kerr resonator.
    Xu G; Nielsen AU; Garbin B; Hill L; Oppo GL; Fatome J; Murdoch SG; Coen S; Erkintalo M
    Nat Commun; 2021 Jun; 12(1):4023. PubMed ID: 34188030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissipative Polarization Domain Walls in a Passive Coherently Driven Kerr Resonator.
    Garbin B; Fatome J; Oppo GL; Erkintalo M; Murdoch SG; Coen S
    Phys Rev Lett; 2021 Jan; 126(2):023904. PubMed ID: 33512212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Breathing dynamics of symmetry-broken temporal cavity solitons in Kerr ring resonators.
    Xu G; Hill L; Fatome J; Oppo GL; Erkintalo M; Murdoch SG; Coen S
    Opt Lett; 2022 Mar; 47(6):1486-1489. PubMed ID: 35290345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interplay of Polarization and Time-Reversal Symmetry Breaking in Synchronously Pumped Ring Resonators.
    Copie F; Woodley MTM; Del Bino L; Silver JM; Zhang S; Del'Haye P
    Phys Rev Lett; 2019 Jan; 122(1):013905. PubMed ID: 31012656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Kerr polarization controller.
    Moroney N; Del Bino L; Zhang S; Woodley MTM; Hill L; Wildi T; Wittwer VJ; Südmeyer T; Oppo GL; Vanner MR; Brasch V; Herr T; Del'Haye P
    Nat Commun; 2022 Jan; 13(1):398. PubMed ID: 35046413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Symmetrization of single-sided or nonsymmetrical distributions: the way to enhance a generation rate of random bits from a physical source of randomness.
    Chizhevsky VN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 1):050101. PubMed ID: 21230421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Symmetry Breaking of Counter-Propagating Light in a Nonlinear Resonator.
    Del Bino L; Silver JM; Stebbings SL; Del'Haye P
    Sci Rep; 2017 Feb; 7():43142. PubMed ID: 28220865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonlinear topological symmetry protection in a dissipative system.
    Coen S; Garbin B; Xu G; Quinn L; Goldman N; Oppo GL; Erkintalo M; Murdoch SG; Fatome J
    Nat Commun; 2024 Feb; 15(1):1398. PubMed ID: 38360729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum random number generator using a microresonator-based Kerr oscillator.
    Okawachi Y; Yu M; Luke K; Carvalho DO; Lipson M; Gaeta AL
    Opt Lett; 2016 Sep; 41(18):4194-7. PubMed ID: 27628355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental observation of the spontaneous breaking of the time-reversal symmetry in a synchronously pumped passive Kerr resonator.
    Xu Y; Coen S
    Opt Lett; 2014 Jun; 39(12):3492-5. PubMed ID: 24978519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual-microcomb generation in a synchronously driven waveguide ring resonator.
    Xu Y; Erkintalo M; Lin Y; Coen S; Ma H; Murdoch SG
    Opt Lett; 2021 Dec; 46(23):6002-6005. PubMed ID: 34851944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient FPGA implementation of high-speed true random number generator.
    Lu Z; Yang S; Liu J; Wang X; Li Y
    Rev Sci Instrum; 2021 Feb; 92(2):024706. PubMed ID: 33648150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spontaneous T-symmetry breaking and exceptional points in cavity quantum electrodynamics systems.
    Lu YK; Peng P; Cao QT; Xu D; Wiersig J; Gong Q; Xiao YF
    Sci Bull (Beijing); 2018 Sep; 63(17):1096-1100. PubMed ID: 36658988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kerr nonlinearity hinders symmetry-breaking states of coupled quantum oscillators.
    Bandyopadhyay B; Banerjee T
    Phys Rev E; 2022 Aug; 106(2-1):024216. PubMed ID: 36109913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spontaneous Symmetry Breaking in a Coherently Driven Nanophotonic Bose-Hubbard Dimer.
    Garbin B; Giraldo A; Peters KJH; Broderick NGR; Spakman A; Raineri F; Levenson A; Rodriguez SRK; Krauskopf B; Yacomotti AM
    Phys Rev Lett; 2022 Feb; 128(5):053901. PubMed ID: 35179911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Programmable quantum random number generator without postprocessing.
    Nguyen L; Rehain P; Sua YM; Huang YP
    Opt Lett; 2018 Feb; 43(4):631-634. PubMed ID: 29444039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spontaneous symmetry breaking and the dynamics of three interacting nonlinear optical resonators with gain and loss.
    Dolinina D; Yulin A
    Phys Rev E; 2022 Mar; 105(3-1):034203. PubMed ID: 35428081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chiral photon blockade in the spinning Kerr resonator.
    Zuo Y; Jiao YF; Xu XW; Miranowicz A; Kuang LM; Jing H
    Opt Express; 2024 Jun; 32(12):22020-22030. PubMed ID: 38859542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A simple high-speed random number generator with minimal post-processing using a random Raman fiber laser.
    Monet F; Boisvert JS; Kashyap R
    Sci Rep; 2021 Jun; 11(1):13182. PubMed ID: 34162986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.