These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 37450828)

  • 1. Dynamics of Nanosecond Laser Pulse Propagation and of Associated Instabilities in a Magnetized Underdense Plasma.
    Yao W; Higginson A; Marquès JR; Antici P; Béard J; Burdonov K; Borghesi M; Castan A; Ciardi A; Coleman B; Chen SN; d'Humières E; Gangolf T; Gremillet L; Khiar B; Lancia L; Loiseau P; Ribeyre X; Soloviev A; Starodubtsev M; Wang Q; Fuchs J
    Phys Rev Lett; 2023 Jun; 130(26):265101. PubMed ID: 37450828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser propagation measurements in long-scale-length underdense plasmas relevant to magnetized liner inertial fusion.
    Harvey-Thompson AJ; Sefkow AB; Wei MS; Nagayama T; Campbell EM; Blue BE; Heeter RF; Koning JM; Peterson KJ; Schmitt A
    Phys Rev E; 2016 Nov; 94(5-1):051201. PubMed ID: 27967028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast electron transport dynamics and energy deposition in magnetized, imploded cylindrical plasma.
    Kawahito D; Bailly-Grandvaux M; Dozières M; McGuffey C; Forestier-Colleoni P; Peebles J; Honrubia JJ; Khiar B; Hansen S; Tzeferacos P; Wei MS; Krauland CM; Gourdain P; Davies JR; Matsuo K; Fujioka S; Campbell EM; Santos JJ; Batani D; Bhutwala K; Zhang S; Beg FN
    Philos Trans A Math Phys Eng Sci; 2021 Jan; 379(2189):20200052. PubMed ID: 33280559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatially resolved measurements of laser filamentation in long scale length underdense plasmas with and without beam smoothing.
    Sarri G; Cecchetti CA; Jung R; Hobbs P; James S; Lockyear J; Stevenson RM; Doria D; Hoarty DJ; Willi O; Borghesi M
    Phys Rev Lett; 2011 Mar; 106(9):095001. PubMed ID: 21405630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intensity limits for propagation of 0.527 microm laser beams through large-scale-length plasmas for inertial confinement fusion.
    Niemann C; Divol L; Froula DH; Gregori G; Jones O; Kirkwood RK; Mackinnon AJ; Meezan NB; Moody JD; Sorce C; Suter LJ; Bahr R; Seka W; Glenzer SH
    Phys Rev Lett; 2005 Mar; 94(8):085005. PubMed ID: 15783902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient acceleration of electrons with counterpropagating intense laser pulses in vacuum and underdense plasma.
    Sheng ZM; Mima K; Zhang J; Meyer-Ter-Vehn J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jan; 69(1 Pt 2):016407. PubMed ID: 14995725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crossed beam energy transfer between optically smoothed laser beams in inhomogeneous plasmas.
    Hüller S; Raj G; Luo M; Rozmus W; Pesme D
    Philos Trans A Math Phys Eng Sci; 2020 Nov; 378(2184):20200038. PubMed ID: 33040659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of large volume, strongly magnetized laser-produced plasmas by use of pulsed external magnetic fields.
    Albertazzi B; Béard J; Ciardi A; Vinci T; Albrecht J; Billette J; Burris-Mog T; Chen SN; Da Silva D; Dittrich S; Herrmannsdörfer T; Hirardin B; Kroll F; Nakatsutsumi M; Nitsche S; Riconda C; Romagnagni L; Schlenvoigt HP; Simond S; Veuillot E; Cowan TE; Portugall O; Pépin H; Fuchs J
    Rev Sci Instrum; 2013 Apr; 84(4):043505. PubMed ID: 23635194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of electron heating on self-induced transparency in relativistic-intensity laser-plasma interactions.
    Siminos E; Grech M; Skupin S; Schlegel T; Tikhonchuk VT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056404. PubMed ID: 23214893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A pulsed-power implementation of "Laser Gate" for increasing laser energy coupling and fusion yield in magnetized liner inertial fusion (MagLIF).
    Miller SM; Slutz SA; Bland SN; Klein SR; Campbell PC; Woolstrum JM; Kuranz CC; Gomez MR; Jordan NM; McBride RD
    Rev Sci Instrum; 2020 Jun; 91(6):063507. PubMed ID: 32611066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resonant self-trapping of high intensity Bessel beams in underdense plasmas.
    Fan J; Parra E; Kim KY; Alexeev I; Milchberg HM; Cooley J; Antonsen TM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):056408. PubMed ID: 12059716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Whole-beam self-focusing in fusion-relevant plasma.
    Spiers BT; Hill MP; Brown C; Ceurvorst L; Ratan N; Savin AF; Allan P; Floyd E; Fyrth J; Hobbs L; James S; Luis J; Ramsay M; Sircombe N; Skidmore J; Aboushelbaya R; Mayr MW; Paddock R; Wang RHW; Norreys PA
    Philos Trans A Math Phys Eng Sci; 2021 Jan; 379(2189):20200159. PubMed ID: 33280566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Propagation instabilities of high-intensity laser-produced electron beams.
    Tatarakis M; Beg FN; Clark EL; Dangor AE; Edwards RD; Evans RG; Goldsack TJ; Ledingham KW; Norreys PA; Sinclair MA; Wei MS; Zepf M; Krushelnick K
    Phys Rev Lett; 2003 May; 90(17):175001. PubMed ID: 12786076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct Measurements of DT Fuel Preheat from Hot Electrons in Direct-Drive Inertial Confinement Fusion.
    Christopherson AR; Betti R; Forrest CJ; Howard J; Theobald W; Delettrez JA; Rosenberg MJ; Solodov AA; Stoeckl C; Patel D; Gopalaswamy V; Cao D; Peebles JL; Edgell DH; Seka W; Epstein R; Wei MS; Gatu Johnson M; Simpson R; Regan SP; Campbell EM
    Phys Rev Lett; 2021 Jul; 127(5):055001. PubMed ID: 34397224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetized fast isochoric laser heating for efficient creation of ultra-high-energy-density states.
    Sakata S; Lee S; Morita H; Johzaki T; Sawada H; Iwasa Y; Matsuo K; Law KFF; Yao A; Hata M; Sunahara A; Kojima S; Abe Y; Kishimoto H; Syuhada A; Shiroto T; Morace A; Yogo A; Iwata N; Nakai M; Sakagami H; Ozaki T; Yamanoi K; Norimatsu T; Nakata Y; Tokita S; Miyanaga N; Kawanaka J; Shiraga H; Mima K; Nishimura H; Bailly-Grandvaux M; Santos JJ; Nagatomo H; Azechi H; Kodama R; Arikawa Y; Sentoku Y; Fujioka S
    Nat Commun; 2018 Sep; 9(1):3937. PubMed ID: 30258053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct Laser Acceleration in Underdense Plasmas with Multi-PW Lasers: A Path to High-Charge, GeV-Class Electron Bunches.
    Babjak R; Willingale L; Arefiev A; Vranic M
    Phys Rev Lett; 2024 Mar; 132(12):125001. PubMed ID: 38579225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laser propagation in dense magnetized plasma.
    Luan SX; Yu W; Li FY; Wu D; Sheng ZM; Yu MY; Zhang J
    Phys Rev E; 2016 Nov; 94(5-1):053207. PubMed ID: 27967162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laser-pulse compression using magnetized plasmas.
    Shi Y; Qin H; Fisch NJ
    Phys Rev E; 2017 Feb; 95(2-1):023211. PubMed ID: 28297990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent progress in quantifying hydrodynamics instabilities and turbulence in inertial confinement fusion and high-energy-density experiments.
    Casner A
    Philos Trans A Math Phys Eng Sci; 2021 Jan; 379(2189):20200021. PubMed ID: 33280557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The importance of the laser pulse-ablator interaction dynamics prior to the ablation plasma phase in inertial confinement fusion studies.
    Kaselouris E; Fitilis I; Skoulakis A; Orphanos Y; Koundourakis G; Clark EL; Chatzakis J; Bakarezos Μ; Papadogiannis NA; Dimitriou V; Tatarakis M
    Philos Trans A Math Phys Eng Sci; 2020 Nov; 378(2184):20200030. PubMed ID: 33040652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.