BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 37451133)

  • 21. Real-time localization of articulated surgical instruments in retinal microsurgery.
    Rieke N; Tan DJ; Amat di San Filippo C; Tombari F; Alsheakhali M; Belagiannis V; Eslami A; Navab N
    Med Image Anal; 2016 Dec; 34():82-100. PubMed ID: 27237604
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A method for going from 2D laparoscope to 3D acquisition of surface landmarks by a novel computer vision approach.
    Garbey M; Nguyen TB; Huang AY; Fikfak V; Dunkin BJ
    Int J Comput Assist Radiol Surg; 2018 Feb; 13(2):267-280. PubMed ID: 28861700
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Automatic tip detection of surgical instruments in biportal endoscopic spine surgery.
    Cho SM; Kim YG; Jeong J; Kim I; Lee HJ; Kim N
    Comput Biol Med; 2021 Jun; 133():104384. PubMed ID: 33864974
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitative Analysis of Transnasal Anterior Skull Base Approach: Report of Technology for Intraoperative Assessment of Instrument Motion.
    Berens AM; Harbison RA; Li Y; Bly RA; Aghdasi N; Ferreira M; Hannaford B; Moe KS
    Surg Innov; 2017 Aug; 24(4):405-410. PubMed ID: 28412879
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Advanced virtual endoscopic pituitary surgery.
    Neubauer A; Wolfsberger S; Forster MT; Mroz L; Wegenkittl R; Bühler K
    IEEE Trans Vis Comput Graph; 2005; 11(5):497-507. PubMed ID: 16144247
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Guide to Annotation of Neurosurgical Intraoperative Video for Machine Learning Analysis and Computer Vision.
    Pangal DJ; Kugener G; Shahrestani S; Attenello F; Zada G; Donoho DA
    World Neurosurg; 2021 Jun; 150():26-30. PubMed ID: 33722717
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multicentric exploration of tool annotation in robotic surgery: lessons learned when starting a surgical artificial intelligence project.
    De Backer P; Eckhoff JA; Simoens J; Müller DT; Allaeys C; Creemers H; Hallemeesch A; Mestdagh K; Van Praet C; Debbaut C; Decaestecker K; Bruns CJ; Meireles O; Mottrie A; Fuchs HF
    Surg Endosc; 2022 Nov; 36(11):8533-8548. PubMed ID: 35941310
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Vision-based endoscope tracking for 3D ultrasound image-guided surgical navigation.
    Yang L; Wang J; Ando T; Kubota A; Yamashita H; Sakuma I; Chiba T; Kobayashi E
    Comput Med Imaging Graph; 2015 Mar; 40():205-16. PubMed ID: 25263644
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Triplet Deep Hashing with Joint Supervised Loss Based on Deep Neural Networks.
    Li M; An Z; Wei Q; Xiang K; Ma Y
    Comput Intell Neurosci; 2019; 2019():8490364. PubMed ID: 31687007
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modeling of the bony pelvis from MRI using a multi-atlas AE-SDM for registration and tracking in image-guided robotic prostatectomy.
    Gao Q; Chang PL; Rueckert D; Ali SM; Cohen D; Pratt P; Mayer E; Yang GZ; Darzi A; Edwards PE
    Comput Med Imaging Graph; 2013 Mar; 37(2):183-94. PubMed ID: 23428829
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery.
    Maier-Hein L; Mountney P; Bartoli A; Elhawary H; Elson D; Groch A; Kolb A; Rodrigues M; Sorger J; Speidel S; Stoyanov D
    Med Image Anal; 2013 Dec; 17(8):974-96. PubMed ID: 23837969
    [TBL] [Abstract][Full Text] [Related]  

  • 32. FUN-SIS: A Fully UNsupervised approach for Surgical Instrument Segmentation.
    Sestini L; Rosa B; De Momi E; Ferrigno G; Padoy N
    Med Image Anal; 2023 Apr; 85():102751. PubMed ID: 36716700
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Weakly Supervised Object Localization and Detection: A Survey.
    Zhang D; Han J; Cheng G; Yang MH
    IEEE Trans Pattern Anal Mach Intell; 2022 Sep; 44(9):5866-5885. PubMed ID: 33877967
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Artificial intelligence and treatment algorithms in spine surgery.
    Charles YP; Lamas V; Ntilikina Y
    Orthop Traumatol Surg Res; 2023 Feb; 109(1S):103456. PubMed ID: 36302452
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Context-specific selection of algorithms for recursive feature tracking in endoscopic image using a new methodology.
    Selka F; Nicolau S; Agnus V; Bessaid A; Marescaux J; Soler L
    Comput Med Imaging Graph; 2015 Mar; 40():49-61. PubMed ID: 25542640
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Automatic data-driven real-time segmentation and recognition of surgical workflow.
    Dergachyova O; Bouget D; Huaulmé A; Morandi X; Jannin P
    Int J Comput Assist Radiol Surg; 2016 Jun; 11(6):1081-9. PubMed ID: 26995598
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An adaptive and fully automatic method for estimating the 3D position of bendable instruments using endoscopic images.
    Cabras P; Nageotte F; Zanne P; Doignon C
    Int J Med Robot; 2017 Dec; 13(4):. PubMed ID: 28387448
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Endoscopic navigation for minimally invasive suturing.
    Wengert C; Bossard L; Häberling A; Baur C; Székely G; Cattin PC
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 2):620-7. PubMed ID: 18044620
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ST-MTL: Spatio-Temporal multitask learning model to predict scanpath while tracking instruments in robotic surgery.
    Islam M; Vs V; Lim CM; Ren H
    Med Image Anal; 2021 Jan; 67():101837. PubMed ID: 33129153
    [TBL] [Abstract][Full Text] [Related]  

  • 40. "A window on tissue" - Using facial orientation to control endoscopic views of tissue depth.
    Wachs JP; Vujjeni K; Matson ET; Adams S
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():935-8. PubMed ID: 21096777
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.