These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 3745120)

  • 21. Branching of o-nitrobenzoate degradation pathway in Arthrobacter protophormiae RKJ100: identification of new intermediates.
    Pandey G; Paul D; Jain RK
    FEMS Microbiol Lett; 2003 Dec; 229(2):231-6. PubMed ID: 14680704
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pathway for degradation of 2-chloro-4-nitrophenol in Arthrobacter sp. SJCon.
    Arora PK; Jain RK
    Curr Microbiol; 2011 Dec; 63(6):568-73. PubMed ID: 21960016
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biochemical and Genetic Analysis of 4-Hydroxypyridine Catabolism in
    Vaitekūnas J; Gasparavičiūtė R; Stankevičiūtė J; Urbelis G; Meškys R
    Microorganisms; 2020 Jun; 8(6):. PubMed ID: 32545463
    [No Abstract]   [Full Text] [Related]  

  • 24. Biochemical pathways and enhanced degradation of di-n-octyl phthalate (DOP) in sequencing batch reactor (SBR) by Arthrobacter sp. SLG-4 and Rhodococcus sp. SLG-6 isolated from activated sludge.
    Zhang K; Liu Y; Chen Q; Luo H; Zhu Z; Chen W; Chen J; Mo Y
    Biodegradation; 2018 Apr; 29(2):171-185. PubMed ID: 29450665
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Utilization of L-threonine by a species of Arthrobacter. A novel catabolic role for "aminoacetone synthase".
    McGilvray D; Morris JG
    Biochem J; 1969 May; 112(5):657-71. PubMed ID: 5821726
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The trans-anethole degradation pathway in an Arthrobacter sp.
    Shimoni E; Baasov T; Ravid U; Shoham Y
    J Biol Chem; 2002 Apr; 277(14):11866-72. PubMed ID: 11805095
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Complete degradation of butyl benzyl phthalate by a defined bacterial consortium: role of individual isolates in the assimilation pathway.
    Chatterjee S; Dutta TK
    Chemosphere; 2008 Jan; 70(5):933-41. PubMed ID: 17669462
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative proteomic analysis of Arthrobacter phenanthrenivorans Sphe3 on phenanthrene, phthalate and glucose.
    Vandera E; Samiotaki M; Parapouli M; Panayotou G; Koukkou AI
    J Proteomics; 2015 Jan; 113():73-89. PubMed ID: 25257624
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Complete degradation of di-n-octyl phthalate by biochemical cooperation between Gordonia sp. strain JDC-2 and Arthrobacter sp. strain JDC-32 isolated from activated sludge.
    Wu X; Liang R; Dai Q; Jin D; Wang Y; Chao W
    J Hazard Mater; 2010 Apr; 176(1-3):262-8. PubMed ID: 19959291
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functional identification of novel genes involved in the glutathione-independent gentisate pathway in Corynebacterium glutamicum.
    Shen XH; Jiang CY; Huang Y; Liu ZP; Liu SJ
    Appl Environ Microbiol; 2005 Jul; 71(7):3442-52. PubMed ID: 16000747
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The enzymic degradation of alkyl-substituted gentisates, maleates and malates.
    Hopper DJ; Chapman PJ; Dagley S
    Biochem J; 1971 Mar; 122(1):29-40. PubMed ID: 5124802
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bacterial degradation of 3,4,5-trimethoxyphenylacetic and 3-ketoglutaric acids.
    Donnelly MI; Chapman PJ; Dagley S
    J Bacteriol; 1981 Aug; 147(2):477-81. PubMed ID: 7263613
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Final steps in the catabolism of nicotine.
    Chiribau CB; Mihasan M; Ganas P; Igloi GL; Artenie V; Brandsch R
    FEBS J; 2006 Apr; 273(7):1528-36. PubMed ID: 16689938
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Function of different amino acid residues in the reaction mechanism of gentisate 1,2-dioxygenases deduced from the analysis of mutants of the salicylate 1,2-dioxygenase from Pseudaminobacter salicylatoxidans.
    Eppinger E; Ferraroni M; Bürger S; Steimer L; Peng G; Briganti F; Stolz A
    Biochim Biophys Acta; 2015 Oct; 1854(10 Pt A):1425-37. PubMed ID: 26093111
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bacterial metabolism of 5-aminosalicylic acid: enzymic conversion to L-malate, pyruvate and ammonia.
    Stolz A; Knackmuss HJ
    J Gen Microbiol; 1993 May; 139(5):1019-25. PubMed ID: 8336104
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Degradation of Swainsonine by the NADP-Dependent Alcohol Dehydrogenase A1R6C3 in Arthrobacter sp. HW08.
    Wang Y; Zhai A; Zhang Y; Qiu K; Wang J; Li Q
    Toxins (Basel); 2016 May; 8(5):. PubMed ID: 27196926
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chitosan enhances xanthone production in Hypericum perforatum subsp. angustifolium cell cultures.
    Tocci N; Ferrari F; Santamaria AR; Valletta A; Rovardi I; Pasqua G
    Nat Prod Res; 2010 Feb; 24(3):286-93. PubMed ID: 20140807
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Plasmids for biodegradation of 2,6-dimethylpyridine, 2,4-dimethylpyridine, and pyridine in strains of Arthrobacter].
    Agapova SR; Andreeva AL; Starovoĭtov II; Vorob'eva LI; Terent'ev PB
    Mol Gen Mikrobiol Virusol; 1992; (5-6):10-3. PubMed ID: 1454076
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recent cancer drug development with xanthone structures.
    Na Y
    J Pharm Pharmacol; 2009 Jun; 61(6):707-12. PubMed ID: 19505360
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phenanthrene degradation in Arthrobacter sp. P1-1: initial 1,2-, 3,4- and 9,10-dioxygenation, and meta- and ortho-cleavages of naphthalene-1,2-diol after its formation from naphthalene-1,2-dicarboxylic acid and hydroxyl naphthoic acids.
    Seo JS; Keum YS; Hu Y; Lee SE; Li QX
    Chemosphere; 2006 Dec; 65(11):2388-94. PubMed ID: 16777186
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.