These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 37451207)

  • 1. Stepping strategies of young adults undergoing sudden external perturbation from different directions.
    Chatagnon T; Olivier AH; Hoyet L; Pettré J; Pontonnier C
    J Biomech; 2023 Aug; 157():111703. PubMed ID: 37451207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of weight-bearing asymmetry on dynamic postural stability in healthy young individuals.
    de Kam D; Kamphuis JF; Weerdesteyn V; Geurts AC
    Gait Posture; 2016 Mar; 45():56-61. PubMed ID: 26979884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of lateral destabilization on compensatory stepping responses.
    Maki BE; McIlroy WE; Perry SD
    J Biomech; 1996 Mar; 29(3):343-53. PubMed ID: 8850640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stepping boundary of external force-controlled perturbations of varying durations: Comparison of experimental data and model simulations.
    Robert T; Vallée P; Tisserand R; Buloup F; Bariatinsky D; Vercher JL; Fitzpatrick RC; Mille ML
    J Biomech; 2018 Jun; 75():89-95. PubMed ID: 29793765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased use of stepping strategy in response to medio-lateral perturbations in the elderly relates to altered reactive tibialis anterior activity.
    Afschrift M; van Deursen R; De Groote F; Jonkers I
    Gait Posture; 2019 Feb; 68():575-582. PubMed ID: 30654320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single and multiple step balance recovery responses can be different at first step lift-off following lateral waist-pull perturbations in older adults.
    Fujimoto M; Bair WN; Rogers MW
    J Biomech; 2017 Apr; 55():41-47. PubMed ID: 28285746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Balance perturbation-evoked cortical N1 responses are larger when stepping and not influenced by motor planning.
    Payne AM; Ting LH
    J Neurophysiol; 2020 Dec; 124(6):1875-1884. PubMed ID: 33052770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling margin of stability with feet in place following a postural perturbation: Effect of altered anthropometric models for estimated extrapolated centre of mass.
    Inkol KA; Huntley AH; Vallis LA
    Gait Posture; 2018 May; 62():434-439. PubMed ID: 29653405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. External postural perturbations induce multiple anticipatory postural adjustments when subjects cannot pre-select their stepping foot.
    Jacobs JV; Horak FB
    Exp Brain Res; 2007 May; 179(1):29-42. PubMed ID: 17091288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel robot for imposing perturbations during overground walking: mechanism, control and normative stepping responses.
    Olenšek A; Zadravec M; Matjačić Z
    J Neuroeng Rehabil; 2016 Jun; 13(1):55. PubMed ID: 27287551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recovery from forward loss of balance in young and older adults using the stepping strategy.
    Carty CP; Mills P; Barrett R
    Gait Posture; 2011 Feb; 33(2):261-7. PubMed ID: 21146992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stepping Responses in Young and Older Adults Following a Perturbation to the Support Surface During Gait.
    McIntosh EI; Zettel JL; Vallis LA
    J Mot Behav; 2017; 49(3):288-298. PubMed ID: 27723429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactive Balance in Individuals With Chronic Stroke: Biomechanical Factors Related to Perturbation-Induced Backward Falling.
    Salot P; Patel P; Bhatt T
    Phys Ther; 2016 Mar; 96(3):338-47. PubMed ID: 26206220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maintaining sagittal plane balance compromises frontal plane balance during reactive stepping in people post-stroke.
    Buurke TJW; Liu C; Park S; den Otter R; Finley JM
    Clin Biomech (Bristol, Avon); 2020 Dec; 80():105135. PubMed ID: 32818902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Untangling biomechanical differences in perturbation-induced stepping strategies for lateral balance stability in older individuals.
    Borrelli J; Creath R; Gray VL; Rogers MW
    J Biomech; 2021 Jan; 114():110161. PubMed ID: 33316540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Body configuration at first stepping-foot contact predicts backward balance recovery capacity in people with chronic stroke.
    de Kam D; Roelofs JMB; Geurts ACH; Weerdesteyn V
    PLoS One; 2018; 13(2):e0192961. PubMed ID: 29470535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Static versus dynamic predictions of protective stepping following waist-pull perturbations in young and older adults.
    Pai YC; Rogers MW; Patton J; Cain TD; Hanke TA
    J Biomech; 1998 Dec; 31(12):1111-8. PubMed ID: 9882043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Do perturbation-evoked responses result in higher reaction time costs depending on the direction and magnitude of perturbation?
    Inkol KA; Huntley AH; Vallis LA
    Exp Brain Res; 2018 Jun; 236(6):1689-1698. PubMed ID: 29623379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of weight-bearing asymmetry on dynamic postural stability in people with chronic stroke.
    de Kam D; Kamphuis JF; Weerdesteyn V; Geurts ACH
    Gait Posture; 2017 Mar; 53():5-10. PubMed ID: 28061401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lateral Perturbation-Induced and Voluntary Stepping in Fallers and Nonfallers After Stroke.
    Gray VL; Fujimoto M; Rogers MW
    Phys Ther; 2020 Aug; 100(9):1557-1567. PubMed ID: 32529236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.