BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 37451353)

  • 1. Mitochondrial dysfunction and skeletal muscle atrophy: Causes, mechanisms, and treatment strategies.
    Kubat GB; Bouhamida E; Ulger O; Turkel I; Pedriali G; Ramaccini D; Ekinci O; Ozerklig B; Atalay O; Patergnani S; Nur Sahin B; Morciano G; Tuncer M; Tremoli E; Pinton P
    Mitochondrion; 2023 Sep; 72():33-58. PubMed ID: 37451353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of alterations in mitochondrial dynamics and PGC-1α over-expression in fast muscle atrophy following hindlimb unloading.
    Cannavino J; Brocca L; Sandri M; Grassi B; Bottinelli R; Pellegrino MA
    J Physiol; 2015 Apr; 593(8):1981-95. PubMed ID: 25565653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial dysfunction: roles in skeletal muscle atrophy.
    Chen X; Ji Y; Liu R; Zhu X; Wang K; Yang X; Liu B; Gao Z; Huang Y; Shen Y; Liu H; Sun H
    J Transl Med; 2023 Jul; 21(1):503. PubMed ID: 37495991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of mitochondrial dynamics and mitophagy in skeletal muscle atrophy: from molecular mechanisms to therapeutic insights.
    Lei Y; Gan M; Qiu Y; Chen Q; Wang X; Liao T; Zhao M; Chen L; Zhang S; Zhao Y; Niu L; Wang Y; Zhu L; Shen L
    Cell Mol Biol Lett; 2024 Apr; 29(1):59. PubMed ID: 38654156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PGC1-α over-expression prevents metabolic alterations and soleus muscle atrophy in hindlimb unloaded mice.
    Cannavino J; Brocca L; Sandri M; Bottinelli R; Pellegrino MA
    J Physiol; 2014 Oct; 592(20):4575-89. PubMed ID: 25128574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immobilization-induced activation of key proteolytic systems in skeletal muscles is prevented by a mitochondria-targeted antioxidant.
    Talbert EE; Smuder AJ; Min K; Kwon OS; Szeto HH; Powers SK
    J Appl Physiol (1985); 2013 Aug; 115(4):529-38. PubMed ID: 23766499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial dysregulation and muscle disuse atrophy.
    Ji LL; Yeo D
    F1000Res; 2019; 8():. PubMed ID: 31559011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fibroblast growth factor 21 controls mitophagy and muscle mass.
    Oost LJ; Kustermann M; Armani A; Blaauw B; Romanello V
    J Cachexia Sarcopenia Muscle; 2019 Jun; 10(3):630-642. PubMed ID: 30895728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial biogenesis: pharmacological approaches.
    Valero T
    Curr Pharm Des; 2014; 20(35):5507-9. PubMed ID: 24606795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Role of Exercise and TFAM in Preventing Skeletal Muscle Atrophy.
    Theilen NT; Kunkel GH; Tyagi SC
    J Cell Physiol; 2017 Sep; 232(9):2348-2358. PubMed ID: 27966783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial signaling contributes to disuse muscle atrophy.
    Powers SK; Wiggs MP; Duarte JA; Zergeroglu AM; Demirel HA
    Am J Physiol Endocrinol Metab; 2012 Jul; 303(1):E31-9. PubMed ID: 22395111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nuclear magnetic resonance in conjunction with functional genomics suggests mitochondrial dysfunction in a murine model of cancer cachexia.
    Constantinou C; Fontes de Oliveira CC; Mintzopoulos D; Busquets S; He J; Kesarwani M; Mindrinos M; Rahme LG; Argilés JM; Tzika AA
    Int J Mol Med; 2011 Jan; 27(1):15-24. PubMed ID: 21069263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox Control of Proteolysis During Inactivity-Induced Skeletal Muscle Atrophy.
    Powers SK; Ozdemir M; Hyatt H
    Antioxid Redox Signal; 2020 Sep; 33(8):559-569. PubMed ID: 31941357
    [No Abstract]   [Full Text] [Related]  

  • 14. PGC-1α overexpression via local transfection attenuates mitophagy pathway in muscle disuse atrophy.
    Kang C; Ji LL
    Free Radic Biol Med; 2016 Apr; 93():32-40. PubMed ID: 26746585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellular mechanism of immobilization-induced muscle atrophy: A mini review.
    Ji LL; Yeo D
    Sports Med Health Sci; 2019 Dec; 1(1):19-23. PubMed ID: 35782462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Muscle Disuse Atrophy Caused by Discord of Intracellular Signaling.
    Ji LL; Yeo D; Kang C
    Antioxid Redox Signal; 2020 Apr; ():. PubMed ID: 32212824
    [No Abstract]   [Full Text] [Related]  

  • 17. Myricanol rescues dexamethasone-induced muscle dysfunction via a sirtuin 1-dependent mechanism.
    Shen S; Liao Q; Liu J; Pan R; Lee SM; Lin L
    J Cachexia Sarcopenia Muscle; 2019 Apr; 10(2):429-444. PubMed ID: 30793539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Obesity worsens mitochondrial quality control and does not protect against skeletal muscle wasting in murine cancer cachexia.
    Cardaci TD; VanderVeen BN; Bullard BM; McDonald SJ; Unger CA; Enos RT; Fan D; Velázquez KT; Frizzell N; Spangenburg EE; Murphy EA
    J Cachexia Sarcopenia Muscle; 2024 Feb; 15(1):124-137. PubMed ID: 38062911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dihydromyricetin Attenuates Dexamethasone-Induced Muscle Atrophy by Improving Mitochondrial Function via the PGC-1α Pathway.
    Huang Y; Chen K; Ren Q; Yi L; Zhu J; Zhang Q; Mi M
    Cell Physiol Biochem; 2018; 49(2):758-779. PubMed ID: 30165349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular mechanisms and signaling pathways of angiotensin II-induced muscle wasting: potential therapeutic targets for cardiac cachexia.
    Yoshida T; Tabony AM; Galvez S; Mitch WE; Higashi Y; Sukhanov S; Delafontaine P
    Int J Biochem Cell Biol; 2013 Oct; 45(10):2322-32. PubMed ID: 23769949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.