These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 37451353)

  • 41. Mitochondrial Bioenergetics and Turnover during Chronic Muscle Disuse.
    Memme JM; Slavin M; Moradi N; Hood DA
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34068411
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Altering aspects of mitochondrial quality to improve musculoskeletal outcomes in disuse atrophy.
    Rosa-Caldwell ME; Lim S; Haynie WS; Jansen LT; Westervelt LC; Amos MG; Washington TA; Greene NP
    J Appl Physiol (1985); 2020 Dec; 129(6):1290-1303. PubMed ID: 32940556
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mitophagy and Mitochondria Biogenesis Are Differentially Induced in Rat Skeletal Muscles during Immobilization and/or Remobilization.
    Deval C; Calonne J; Coudy-Gandilhon C; Vazeille E; Bechet D; Polge C; Taillandier D; Attaix D; Combaret L
    Int J Mol Sci; 2020 May; 21(10):. PubMed ID: 32456262
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mitochondrial Apoptotic Signaling Involvement in Remodeling During Myogenesis and Skeletal Muscle Atrophy.
    Rahman FA; Quadrilatero J
    Semin Cell Dev Biol; 2023 Jul; 143():66-74. PubMed ID: 35241367
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Skeletal muscle atrophy: From mechanisms to treatments.
    Yin L; Li N; Jia W; Wang N; Liang M; Yang X; Du G
    Pharmacol Res; 2021 Oct; 172():105807. PubMed ID: 34389456
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Pre-cachexia in patients with stages I-III non-small cell lung cancer: systemic inflammation and functional impairment without activation of skeletal muscle ubiquitin proteasome system.
    Op den Kamp CM; Langen RC; Minnaard R; Kelders MC; Snepvangers FJ; Hesselink MK; Dingemans AC; Schols AM
    Lung Cancer; 2012 Apr; 76(1):112-7. PubMed ID: 22018880
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The connection between the dynamic remodeling of the mitochondrial network and the regulation of muscle mass.
    Romanello V; Sandri M
    Cell Mol Life Sci; 2021 Feb; 78(4):1305-1328. PubMed ID: 33078210
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Signaling pathways controlling skeletal muscle mass.
    Egerman MA; Glass DJ
    Crit Rev Biochem Mol Biol; 2014; 49(1):59-68. PubMed ID: 24237131
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Muscle wasting in cancer: the role of mitochondria.
    Argilés JM; López-Soriano FJ; Busquets S
    Curr Opin Clin Nutr Metab Care; 2015 May; 18(3):221-5. PubMed ID: 25769061
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Signaling pathways perturbing muscle mass.
    Glass DJ
    Curr Opin Clin Nutr Metab Care; 2010 May; 13(3):225-9. PubMed ID: 20397318
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Advances in research on cell models for skeletal muscle atrophy.
    Li L; Huang C; Pang J; Huang Y; Chen X; Chen G
    Biomed Pharmacother; 2023 Nov; 167():115517. PubMed ID: 37738794
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mechanisms of skeletal muscle atrophy.
    Ventadour S; Attaix D
    Curr Opin Rheumatol; 2006 Nov; 18(6):631-5. PubMed ID: 17053511
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mitochondrial biogenesis and fragmentation as regulators of muscle protein degradation.
    Romanello V; Sandri M
    Curr Hypertens Rep; 2010 Dec; 12(6):433-9. PubMed ID: 20967516
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The Role of GSK-3β in the Regulation of Protein Turnover, Myosin Phenotype, and Oxidative Capacity in Skeletal Muscle under Disuse Conditions.
    Mirzoev TM; Sharlo KA; Shenkman BS
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34064895
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Apobec2 deficiency causes mitochondrial defects and mitophagy in skeletal muscle.
    Sato Y; Ohtsubo H; Nihei N; Kaneko T; Sato Y; Adachi SI; Kondo S; Nakamura M; Mizunoya W; Iida H; Tatsumi R; Rada C; Yoshizawa F
    FASEB J; 2018 Mar; 32(3):1428-1439. PubMed ID: 29127187
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Doxorubicin-induced skeletal muscle atrophy: Elucidating the underlying molecular pathways.
    Hiensch AE; Bolam KA; Mijwel S; Jeneson JAL; Huitema ADR; Kranenburg O; van der Wall E; Rundqvist H; Wengstrom Y; May AM
    Acta Physiol (Oxf); 2020 Jun; 229(2):e13400. PubMed ID: 31600860
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Metabolic derangements of skeletal muscle from a murine model of glioma cachexia.
    Cui P; Shao W; Huang C; Wu CJ; Jiang B; Lin D
    Skelet Muscle; 2019 Jan; 9(1):3. PubMed ID: 30635036
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Pectoralis major muscle atrophy is associated with mitochondrial energy wasting in cachectic patients with gastrointestinal cancer.
    Dolly A; Lecomte T; Tabchouri N; Caulet M; Michot N; Anon B; Chautard R; Desvignes Y; Ouaissi M; Fromont-Hankard G; Dumas JF; Servais S
    J Cachexia Sarcopenia Muscle; 2022 Jun; 13(3):1837-1849. PubMed ID: 35316572
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Muscle wasting: an overview of recent developments in basic research.
    Palus S; von Haehling S; Springer J
    Int J Cardiol; 2014 Oct; 176(3):640-4. PubMed ID: 25205489
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Can antioxidants protect against disuse muscle atrophy?
    Powers SK
    Sports Med; 2014 Nov; 44 Suppl 2(Suppl 2):S155-65. PubMed ID: 25355189
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.