BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 37451495)

  • 1. Generating synthetic clinical data that capture class imbalanced distributions with generative adversarial networks: Example using antiretroviral therapy for HIV.
    Kuo NI; Garcia F; Sönnerborg A; Böhm M; Kaiser R; Zazzi M; ; Polizzotto M; Jorm L; Barbieri S
    J Biomed Inform; 2023 Aug; 144():104436. PubMed ID: 37451495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Health Gym: synthetic health-related datasets for the development of reinforcement learning algorithms.
    Kuo NI; Polizzotto MN; Finfer S; Garcia F; Sönnerborg A; Zazzi M; Böhm M; Kaiser R; Jorm L; Barbieri S
    Sci Data; 2022 Nov; 9(1):693. PubMed ID: 36369205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generating synthetic personal health data using conditional generative adversarial networks combining with differential privacy.
    Sun C; van Soest J; Dumontier M
    J Biomed Inform; 2023 Jul; 143():104404. PubMed ID: 37268168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain Tumor Classification Using a Combination of Variational Autoencoders and Generative Adversarial Networks.
    Ahmad B; Sun J; You Q; Palade V; Mao Z
    Biomedicines; 2022 Jan; 10(2):. PubMed ID: 35203433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imbalanced medical disease dataset classification using enhanced generative adversarial network.
    Suresh T; Brijet Z; Subha TD
    Comput Methods Biomech Biomed Engin; 2023; 26(14):1702-1718. PubMed ID: 36322625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new imbalanced data oversampling method based on Bootstrap method and Wasserstein Generative Adversarial Network.
    Hou B; Chen G
    Math Biosci Eng; 2024 Feb; 21(3):4309-4327. PubMed ID: 38549329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards an Effective Intrusion Detection Model Using Focal Loss Variational Autoencoder for Internet of Things (IoT).
    Khanam S; Ahmedy I; Idris MYI; Jaward MH
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving Skin Cancer Classification Using Heavy-Tailed Student T-Distribution in Generative Adversarial Networks (TED-GAN).
    Ahmad B; Jun S; Palade V; You Q; Mao L; Zhongjie M
    Diagnostics (Basel); 2021 Nov; 11(11):. PubMed ID: 34829494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving mixed-integer temporal modeling by generating synthetic data using conditional generative adversarial networks: A case study of fluid overload prediction in the intensive care unit.
    Rafiei A; Ghiasi Rad M; Sikora A; Kamaleswaran R
    Comput Biol Med; 2024 Jan; 168():107749. PubMed ID: 38011778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A method for machine learning generation of realistic synthetic datasets for validating healthcare applications.
    Arvanitis TN; White S; Harrison S; Chaplin R; Despotou G
    Health Informatics J; 2022; 28(2):14604582221077000. PubMed ID: 35414269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving Multi-Agent Generative Adversarial Nets with Variational Latent Representation.
    Zhao H; Li T; Xiao Y; Wang Y
    Entropy (Basel); 2020 Sep; 22(9):. PubMed ID: 33286824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Conditional GAN for Generating Time Series Data for Stress Detection in Wearable Physiological Sensor Data.
    Ehrhart M; Resch B; Havas C; Niederseer D
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel method for detecting credit card fraud problems.
    Du H; Lv L; Wang H; Guo A
    PLoS One; 2024; 19(3):e0294537. PubMed ID: 38446831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing and improving the performance of imbalanced class data using novel GBO and SSG: A comparative analysis.
    Ahsan MM; Ali MS; Siddique Z
    Neural Netw; 2024 May; 173():106157. PubMed ID: 38335796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generative Adversarial Network-Based Fault Detection in Semiconductor Equipment with Class-Imbalanced Data.
    Choi JE; Seol DH; Kim CY; Hong SJ
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthetic Tabular Data Based on Generative Adversarial Networks in Health Care: Generation and Validation Using the Divide-and-Conquer Strategy.
    Kang HYJ; Batbaatar E; Choi DW; Choi KS; Ko M; Ryu KS
    JMIR Med Inform; 2023 Nov; 11():e47859. PubMed ID: 37999942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deepfakes in Ophthalmology: Applications and Realism of Synthetic Retinal Images from Generative Adversarial Networks.
    Chen JS; Coyner AS; Chan RVP; Hartnett ME; Moshfeghi DM; Owen LA; Kalpathy-Cramer J; Chiang MF; Campbell JP
    Ophthalmol Sci; 2021 Dec; 1(4):100079. PubMed ID: 36246951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Data augmentation for enhancing EEG-based emotion recognition with deep generative models.
    Luo Y; Zhu LZ; Wan ZY; Lu BL
    J Neural Eng; 2020 Oct; 17(5):056021. PubMed ID: 33052888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Tutorial on Generative Adversarial Networks with Application to Classification of Imbalanced Data.
    Huang Y; Fields KG; Ma Y
    Stat Anal Data Min; 2022 Oct; 15(5):543-552. PubMed ID: 36199763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-content image generation for drug discovery using generative adversarial networks.
    Hussain S; Anees A; Das A; Nguyen BP; Marzuki M; Lin S; Wright G; Singhal A
    Neural Netw; 2020 Dec; 132():353-363. PubMed ID: 32977280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.