These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 37451520)

  • 1. A concise continuous time random-walk diffusion model for characterization of non-exponential signal decay in magnetic resonance imaging.
    Yu Y; Liang Y
    Magn Reson Imaging; 2023 Nov; 103():84-91. PubMed ID: 37451520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of Anomalous Diffusion in Porous Biological Tissues Using Fractional Order Derivatives and Entropy.
    Magin RL; Ingo C; Colon-Perez L; Triplett W; Mareci TH
    Microporous Mesoporous Mater; 2013 Sep; 178():39-43. PubMed ID: 24072979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying potential imaging markers for diffusion property changes in a mouse model of amyotrophic lateral sclerosis: Application of the continuous time random walk model to ultrahigh b-value diffusion-weighted MR images of spinal cord tissue.
    Gao J; Jiang M; Erricolo D; Magin RL; Morfini G; Royston T; Larson AC; Li W
    NMR Biomed; 2024 Jan; 37(1):e5037. PubMed ID: 37721118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of a continuous-time random-walk diffusion model for the differentiation of malignant and benign breast lesions and its association with Ki-67 expression.
    Du M; Zou D; Gao P; Yang Z; Hou Y; Zheng L; Zhang N; Liu Y
    NMR Biomed; 2023 Aug; 36(8):e4920. PubMed ID: 36912198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On random walks and entropy in diffusion-weighted magnetic resonance imaging studies of neural tissue.
    Ingo C; Magin RL; Colon-Perez L; Triplett W; Mareci TH
    Magn Reson Med; 2014 Feb; 71(2):617-27. PubMed ID: 23508765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Can anomalous diffusion models in magnetic resonance imaging be used to characterise white matter tissue microstructure?
    Yu Q; Reutens D; Vegh V
    Neuroimage; 2018 Jul; 175():122-137. PubMed ID: 29609006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parsimonious continuous time random walk models and kurtosis for diffusion in magnetic resonance of biological tissue.
    Ingo C; Sui Y; Chen Y; Parrish TB; Webb AG; Ronen I
    Front Phys; 2015 Mar; 3():. PubMed ID: 28344972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New Insights into the Fractional Order Diffusion Equation Using Entropy and Kurtosis.
    Ingo C; Magin RL; Parrish TB
    Entropy (Basel); 2014 Nov; 16(11):5838-5852. PubMed ID: 28344436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A fractional motion diffusion model for grading pediatric brain tumors.
    Karaman MM; Wang H; Sui Y; Engelhard HH; Li Y; Zhou XJ
    Neuroimage Clin; 2016; 12():707-714. PubMed ID: 27761401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quartile histogram assessment of glioma malignancy using high b-value diffusion MRI with a continuous-time random-walk model.
    Karaman MM; Zhang J; Xie KL; Zhu W; Zhou XJ
    NMR Biomed; 2021 Apr; 34(4):e4485. PubMed ID: 33543512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Capturing complexity of the diffusion-weighted MR signal decay.
    Magin RL; Karaman MM; Hall MG; Zhu W; Zhou XJ
    Magn Reson Imaging; 2019 Feb; 56():110-118. PubMed ID: 30314665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differentiating low- and high-grade pediatric brain tumors using a continuous-time random-walk diffusion model at high b-values.
    Karaman MM; Sui Y; Wang H; Magin RL; Li Y; Zhou XJ
    Magn Reson Med; 2016 Oct; 76(4):1149-57. PubMed ID: 26519663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quasi-diffusion magnetic resonance imaging (QDI): A fast, high b-value diffusion imaging technique.
    Barrick TR; Spilling CA; Ingo C; Madigan J; Isaacs JD; Rich P; Jones TL; Magin RL; Hall MG; Howe FA
    Neuroimage; 2020 May; 211():116606. PubMed ID: 32032739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diffusion in Sephadex Gel Structures: Time Dependency Revealed by Multi-Sequence Acquisition over a Broad Diffusion Time Range.
    Dan G; Li W; Zhong Z; Sun K; Luo Q; Magin RL; Zhou XJ; Karaman MM
    Mathematics (Basel); 2021 Jul; 9(14):. PubMed ID: 34386373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Classification of fractional order biomarkers for anomalous diffusion using q-space entropy.
    Magin RL; Ingo C; Triplett W; Colon-Perez L; Mareci TH
    Crit Rev Biomed Eng; 2014; 42(1):63-83. PubMed ID: 25271359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analyzing signal attenuation in PFG anomalous diffusion via a non-Gaussian phase distribution approximation approach by fractional derivatives.
    Lin G
    J Chem Phys; 2016 Nov; 145(19):194202. PubMed ID: 27875861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generalisation of continuous time random walk to anomalous diffusion MRI models with an age-related evaluation of human corpus callosum.
    Yang Q; Reutens DC; Vegh V
    Neuroimage; 2022 Apr; 250():118903. PubMed ID: 35033674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multipoint correlation functions for continuous-time random walk models of anomalous diffusion.
    Sanda F; Mukamel S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 1):031108. PubMed ID: 16241412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Signal attenuation of PFG restricted anomalous diffusions in plate, sphere, and cylinder.
    Lin G; Zheng S; Liao X
    J Magn Reson; 2016 Nov; 272():25-36. PubMed ID: 27616657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatially-constrained probability distribution model of incoherent motion (SPIM) for abdominal diffusion-weighted MRI.
    Kurugol S; Freiman M; Afacan O; Perez-Rossello JM; Callahan MJ; Warfield SK
    Med Image Anal; 2016 Aug; 32():173-83. PubMed ID: 27111049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.