BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 3745162)

  • 1. Rate-determining step in phospholipase A2 mechanism. 18O isotope exchange determined by 13C NMR.
    Lombardo D; Fanni T; Plückthun A; Dennis EA
    J Biol Chem; 1986 Sep; 261(25):11663-6. PubMed ID: 3745162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 18O isotope exchange experiments on phospholipase A2 determined by 13C-NMR: monomeric phosphatidylcholine and micellar phosphatidylethanolamine substrates.
    Fanni T; Deems RA; Dennis EA
    Biochim Biophys Acta; 1989 Jul; 1004(1):134-8. PubMed ID: 2742867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The interaction of phospholipase A2 with phospholipid analogues and inhibitors.
    Yu L; Deems RA; Hajdu J; Dennis EA
    J Biol Chem; 1990 Feb; 265(5):2657-64. PubMed ID: 2303420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of the hydrolysis of monodispersed dihexanoyllecithin catalyzed by a cobra (Naja naja atra) venom phospholipase A2.
    Teshima K; Samejima Y; Kawauchi S; Ikeda K; Hayashi K
    J Biochem; 1985 Dec; 98(6):1509-17. PubMed ID: 4093439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation, aggregation, and product inhibition of cobra venom phospholipase A2 and comparison with other phospholipases.
    Plückthun A; Dennis EA
    J Biol Chem; 1985 Sep; 260(20):11099-106. PubMed ID: 4030786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The interaction of dialkyl ether lecithins with phospholipase A2 (Naja naja naja).
    DeBose CD; Roberts MF
    J Biol Chem; 1983 May; 258(10):6327-34. PubMed ID: 6687887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methyl branching in short-chain lecithins: are both chains important for effective phospholipase A2 activity?
    DeBose CD; Burns RA; Donovan JM; Roberts MF
    Biochemistry; 1985 Mar; 24(6):1298-306. PubMed ID: 3986178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cobra venom phospholipase A2: a review of its action toward lipid/water interfaces.
    Dennis EA; Darke PL; Deems RA; Kensil CR; Plückthun A
    Mol Cell Biochem; 1981 Apr; 36(1):37-45. PubMed ID: 7242529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phospholipids chiral at phosphorus. Preparation and spectral properties of chiral thiophospholipids.
    Bruzik K; Jiang RT; Tsai MD
    Biochemistry; 1983 May; 22(10):2478-86. PubMed ID: 6688028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micellar bolaform and omega-carboxylate phosphatidylcholines as substrates for phospholipases.
    Lewis KA; Soltys CE; Yu K; Roberts MF
    Biochemistry; 1994 May; 33(17):5000-10. PubMed ID: 8172875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential hydrolysis of 1-alkyl-2-acyl and diacylglycerophosphocholines by human and non-human phospholipases A2.
    Cabré F; García AM; Carabaza A; Mauleón D; Carganico G
    Biochim Biophys Acta; 1992 Mar; 1124(3):297-9. PubMed ID: 1576169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of monomeric activators in cobra venom phospholipase A2 action.
    Plückthun A; Dennis EA
    Biochemistry; 1982 Apr; 21(8):1750-6. PubMed ID: 7082644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of oxygen exchange at the anomeric carbon atom of D-glucose and D-erythrose using the oxygen-18 isotope effect in carbon-13 nuclear magnetic resonance spectroscopy.
    Risley JM; Van Etten RL
    Biochemistry; 1982 Dec; 21(25):6360-5. PubMed ID: 6217836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the role of substrate conformation in phospholipase A2 action on aggregated phospholipids using constrained phosphatidylcholine analogues.
    Barlow PN; Lister MD; Sigler PB; Dennis EA
    J Biol Chem; 1988 Sep; 263(26):12954-8. PubMed ID: 3417646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of prodan-phosphatidylcholine, a new fluorescent probe, and its interactions with pancreatic and snake venom phospholipases A2.
    Hendrickson HS; Dumdei EJ; Batchelder AG; Carlson GL
    Biochemistry; 1987 Jun; 26(12):3697-703. PubMed ID: 3651404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The relationship between high-affinity noncatalytic binding of snake venom phospholipases A2 to brain synaptic plasma membranes and their central lethal potencies.
    Rapuano BE; Yang CC; Rosenberg P
    Biochim Biophys Acta; 1986 Apr; 856(3):457-70. PubMed ID: 3964691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipid-induced aggregation of phospholipase A2: sucrose density gradient ultracentrifugation and crosslinking studies.
    Hazlett TL; Dennis EA
    Biochim Biophys Acta; 1988 Jul; 961(1):22-9. PubMed ID: 3382690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The 18O isotope effect in 13C nuclear magnetic resonance spectroscopy: mechanistic studies on asparaginase from Escherichia coli.
    Röhm KH; Van Etten RL
    Arch Biochem Biophys; 1986 Jan; 244(1):128-36. PubMed ID: 3511841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phospholipids chiral at phosphorus. Synthesis of chiral phosphatidylcholine and stereochemistry of phospholipase D.
    Bruzik K; Tsai MD
    Biochemistry; 1984 Apr; 23(8):1656-61. PubMed ID: 6722117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phospholipids chiral at phosphorus. Absolute configuration of chiral thiophospholipids and stereospecificity of phospholipase D.
    Jiang RT; Shyy YJ; Tsai MD
    Biochemistry; 1984 Apr; 23(8):1661-7. PubMed ID: 6722118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.