These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 37451682)
1. Inferring cancer disease response from radiology reports using large language models with data augmentation and prompting. Tan RSYC; Lin Q; Low GH; Lin R; Goh TC; Chang CCE; Lee FF; Chan WY; Tan WC; Tey HJ; Leong FL; Tan HQ; Nei WL; Chay WY; Tai DWM; Lai GGY; Cheng LT; Wong FY; Chua MCH; Chua MLK; Tan DSW; Thng CH; Tan IBH; Ng HT J Am Med Inform Assoc; 2023 Sep; 30(10):1657-1664. PubMed ID: 37451682 [TBL] [Abstract][Full Text] [Related]
2. Model tuning or prompt Tuning? a study of large language models for clinical concept and relation extraction. Peng C; Yang X; Smith KE; Yu Z; Chen A; Bian J; Wu Y J Biomed Inform; 2024 May; 153():104630. PubMed ID: 38548007 [TBL] [Abstract][Full Text] [Related]
3. Automatic text classification of actionable radiology reports of tinnitus patients using bidirectional encoder representations from transformer (BERT) and in-domain pre-training (IDPT). Li J; Lin Y; Zhao P; Liu W; Cai L; Sun J; Zhao L; Yang Z; Song H; Lv H; Wang Z BMC Med Inform Decis Mak; 2022 Jul; 22(1):200. PubMed ID: 35907966 [TBL] [Abstract][Full Text] [Related]
4. Transformer versus traditional natural language processing: how much data is enough for automated radiology report classification? Yang E; Li MD; Raghavan S; Deng F; Lang M; Succi MD; Huang AJ; Kalpathy-Cramer J Br J Radiol; 2023 Sep; 96(1149):20220769. PubMed ID: 37162253 [TBL] [Abstract][Full Text] [Related]
5. Improved Fine-Tuning of In-Domain Transformer Model for Inferring COVID-19 Presence in Multi-Institutional Radiology Reports. Chambon P; Cook TS; Langlotz CP J Digit Imaging; 2023 Feb; 36(1):164-177. PubMed ID: 36323915 [TBL] [Abstract][Full Text] [Related]
6. Information extraction from weakly structured radiological reports with natural language queries. Dada A; Ufer TL; Kim M; Hasin M; Spieker N; Forsting M; Nensa F; Egger J; Kleesiek J Eur Radiol; 2024 Jan; 34(1):330-337. PubMed ID: 37505252 [TBL] [Abstract][Full Text] [Related]
7. Automated labelling of radiology reports using natural language processing: Comparison of traditional and newer methods. Chng SY; Tern PJW; Kan MRX; Cheng LTE Health Care Sci; 2023 Apr; 2(2):120-128. PubMed ID: 38938764 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of large language models performance against humans for summarizing MRI knee radiology reports: A feasibility study. López-Úbeda P; Martín-Noguerol T; Díaz-Angulo C; Luna A Int J Med Inform; 2024 Jul; 187():105443. PubMed ID: 38615509 [TBL] [Abstract][Full Text] [Related]
9. Automated deidentification of radiology reports combining transformer and "hide in plain sight" rule-based methods. Chambon PJ; Wu C; Steinkamp JM; Adleberg J; Cook TS; Langlotz CP J Am Med Inform Assoc; 2023 Jan; 30(2):318-328. PubMed ID: 36416419 [TBL] [Abstract][Full Text] [Related]
10. Natural Language Processing Model for Identifying Critical Findings-A Multi-Institutional Study. Banerjee I; Davis MA; Vey BL; Mazaheri S; Khan F; Zavaletta V; Gerard R; Gichoya JW; Patel B J Digit Imaging; 2023 Feb; 36(1):105-113. PubMed ID: 36344632 [TBL] [Abstract][Full Text] [Related]
11. Comprehensive Word-Level Classification of Screening Mammography Reports Using a Neural Network Sequence Labeling Approach. Short RG; Bralich J; Bogaty D; Befera NT J Digit Imaging; 2019 Oct; 32(5):685-692. PubMed ID: 30338478 [TBL] [Abstract][Full Text] [Related]
12. Automatic Classification of Tumor Response From Radiology Reports With Rule-Based Natural Language Processing Integrated Into the Clinical Oncology Workflow. Laurent G; Craynest F; Thobois M; Hajjaji N JCO Clin Cancer Inform; 2023 Jan; 7():e2200139. PubMed ID: 36780606 [TBL] [Abstract][Full Text] [Related]
14. Performance of a Machine Learning Classifier of Knee MRI Reports in Two Large Academic Radiology Practices: A Tool to Estimate Diagnostic Yield. Hassanpour S; Langlotz CP; Amrhein TJ; Befera NT; Lungren MP AJR Am J Roentgenol; 2017 Apr; 208(4):750-753. PubMed ID: 28140627 [TBL] [Abstract][Full Text] [Related]
15. Identification of Long Bone Fractures in Radiology Reports Using Natural Language Processing to support Healthcare Quality Improvement. Grundmeier RW; Masino AJ; Casper TC; Dean JM; Bell J; Enriquez R; Deakyne S; Chamberlain JM; Alpern ER; Appl Clin Inform; 2016 Nov; 7(4):1051-1068. PubMed ID: 27826610 [TBL] [Abstract][Full Text] [Related]
16. Natural Language Processing of Radiology Reports in Patients With Hepatocellular Carcinoma to Predict Radiology Resource Utilization. Brown AD; Kachura JR J Am Coll Radiol; 2019 Jun; 16(6):840-844. PubMed ID: 30833164 [TBL] [Abstract][Full Text] [Related]
17. Application of Deep Learning in Generating Structured Radiology Reports: A Transformer-Based Technique. Moezzi SAR; Ghaedi A; Rahmanian M; Mousavi SZ; Sami A J Digit Imaging; 2023 Feb; 36(1):80-90. PubMed ID: 36002778 [TBL] [Abstract][Full Text] [Related]
18. Use of Natural Language Processing to Infer Sites of Metastatic Disease From Radiology Reports at Scale. Tay SB; Low GH; Wong GJE; Tey HJ; Leong FL; Li C; Chua MLK; Tan DSW; Thng CH; Tan IBH; Tan RSYC JCO Clin Cancer Inform; 2024 May; 8():e2300122. PubMed ID: 38788166 [TBL] [Abstract][Full Text] [Related]
19. Automated Radiology-Arthroscopy Correlation of Knee Meniscal Tears Using Natural Language Processing Algorithms. Li MD; Deng F; Chang K; Kalpathy-Cramer J; Huang AJ Acad Radiol; 2022 Apr; 29(4):479-487. PubMed ID: 33583713 [TBL] [Abstract][Full Text] [Related]
20. Temporal bone radiology report classification using open source machine learning and natural langue processing libraries. Masino AJ; Grundmeier RW; Pennington JW; Germiller JA; Crenshaw EB BMC Med Inform Decis Mak; 2016 Jun; 16():65. PubMed ID: 27267768 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]