These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 3745202)

  • 1. Age-dependent accumulation of protein residues which can be hydrolyzed to D-aspartic acid in human erythrocytes.
    Brunauer LS; Clarke S
    J Biol Chem; 1986 Sep; 261(27):12538-43. PubMed ID: 3745202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of aspartic acid and asparagine residues in the aging of erythrocyte proteins: cellular metabolism of racemized and isomerized forms by methylation reactions.
    Clarke S
    Prog Clin Biol Res; 1985; 195():91-107. PubMed ID: 4059282
    [No Abstract]   [Full Text] [Related]  

  • 3. Methylation at D-aspartyl residues in erythrocytes: possible step in the repair of aged membrane proteins.
    McFadden PN; Clarke S
    Proc Natl Acad Sci U S A; 1982 Apr; 79(8):2460-4. PubMed ID: 6123997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane protein carboxyl methylation increases with human erythrocyte age. Evidence for an increase in the number of methylatable sites.
    Barber JR; Clarke S
    J Biol Chem; 1983 Jan; 258(2):1189-96. PubMed ID: 6822497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Does the chemical instability of aspartyl and asparaginyl residues in proteins contribute to erythrocyte aging? The role of protein carboxyl methylation reactions.
    Lowenson J; Clarke S
    Blood Cells; 1988; 14(1):103-18. PubMed ID: 3052632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. D-amino acids in aging erythrocytes.
    Ingrosso D; Perna AF
    EXS; 1998; 85():119-41. PubMed ID: 9949872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. D-aspartate content of erythrocyte membrane proteins is decreased in uremia: implications for the repair of damaged proteins.
    Perna AF; D'Aniello A; Lowenson JD; Clarke S; De Santo NG; Ingrosso D
    J Am Soc Nephrol; 1997 Jan; 8(1):95-104. PubMed ID: 9013453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hypotheses on the physiological role of enzymatic protein methyl esterification using human erythrocytes as a model system.
    Galletti P; Manna C; Ingrosso D; Iardino P; Zappia V
    Adv Exp Med Biol; 1991; 307():149-60. PubMed ID: 1805583
    [No Abstract]   [Full Text] [Related]  

  • 9. Spontaneous degradation and enzymatic repair of aspartyl and asparaginyl residues in aging red cell proteins analyzed by computer simulation.
    Lowenson JD; Clarke S
    Gerontology; 1991; 37(1-3):128-51. PubMed ID: 1829049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Considerations on the role of aspartic acid racemization in the aging process.
    Helfman PM; Bada JL; Shou MY
    Gerontology; 1977; 23(6):419-25. PubMed ID: 892449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides. Succinimide-linked reactions that contribute to protein degradation.
    Geiger T; Clarke S
    J Biol Chem; 1987 Jan; 262(2):785-94. PubMed ID: 3805008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of aspartic acid as a site of methylation in human erythrocyte membrane proteins.
    Janson CA; Clarke S
    J Biol Chem; 1980 Dec; 255(24):11640-3. PubMed ID: 7440560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carboxyl methylation of cytosolic proteins in intact human erythrocytes. Identification of numerous methyl-accepting proteins including hemoglobin and carbonic anhydrase.
    O'Connor CM; Clarke S
    J Biol Chem; 1984 Feb; 259(4):2570-8. PubMed ID: 6421813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methylation of calmodulin at carboxylic acid residues in erythrocytes. A non-regulatory covalent modification?
    Brunauer LS; Clarke S
    Biochem J; 1986 Jun; 236(3):811-20. PubMed ID: 3790092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Racemization of individual aspartate residues in human myelin basic protein.
    Shapira R; Wilkinson KD; Shapira G
    J Neurochem; 1988 Feb; 50(2):649-54. PubMed ID: 2447246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human erythrocyte D-aspartyl/L-isoaspartyl methyltransferases: enzymes that recognize age-damaged proteins.
    Ingrosso D; Clarke S
    Adv Exp Med Biol; 1991; 307():263-76. PubMed ID: 1805590
    [No Abstract]   [Full Text] [Related]  

  • 17. Methylation of erythrocyte membrane proteins at extracellular and intracellular D-aspartyl sites in vitro. Saturation of intracellular sites in vivo.
    O'Connor CM; Clarke S
    J Biol Chem; 1983 Jul; 258(13):8485-92. PubMed ID: 6863297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mammalian brain and erythrocyte carboxyl methyltransferases are similar enzymes that recognize both D-aspartyl and L-isoaspartyl residues in structurally altered protein substrates.
    O'Connor CM; Aswad DW; Clarke S
    Proc Natl Acad Sci U S A; 1984 Dec; 81(24):7757-61. PubMed ID: 6595658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased methyl esterification of altered aspartyl residues in erythrocyte membrane proteins in response to oxidative stress.
    Ingrosso D; D'angelo S; di Carlo E; Perna AF; Zappia V; Galletti P
    Eur J Biochem; 2000 Jul; 267(14):4397-405. PubMed ID: 10880963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recognition of D-aspartyl residues in polypeptides by the erythrocyte L-isoaspartyl/D-aspartyl protein methyltransferase. Implications for the repair hypothesis.
    Lowenson JD; Clarke S
    J Biol Chem; 1992 Mar; 267(9):5985-95. PubMed ID: 1556110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.