These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 37452044)
1. Periodic orbits in chaotic systems simulated at low precision. Klöwer M; Coveney PV; Paxton EA; Palmer TN Sci Rep; 2023 Jul; 13(1):11410. PubMed ID: 37452044 [TBL] [Abstract][Full Text] [Related]
2. Number Formats, Error Mitigation, and Scope for 16-Bit Arithmetics in Weather and Climate Modeling Analyzed With a Shallow Water Model. Klöwer M; Düben PD; Palmer TN J Adv Model Earth Syst; 2020 Oct; 12(10):e2020MS002246. PubMed ID: 33282116 [TBL] [Abstract][Full Text] [Related]
3. Constructing periodic orbits of high-dimensional chaotic systems by an adjoint-based variational method. Azimi S; Ashtari O; Schneider TM Phys Rev E; 2022 Jan; 105(1-1):014217. PubMed ID: 35193314 [TBL] [Abstract][Full Text] [Related]
4. Time-averaged properties of unstable periodic orbits and chaotic orbits in ordinary differential equation systems. Saiki Y; Yamada M Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 2):015201. PubMed ID: 19257096 [TBL] [Abstract][Full Text] [Related]
5. Unstable periodic orbits and noise in chaos computing. Kia B; Dari A; Ditto WL; Spano ML Chaos; 2011 Dec; 21(4):047520. PubMed ID: 22225394 [TBL] [Abstract][Full Text] [Related]
6. Decomposing the dynamics of the Lorenz 1963 model using unstable periodic orbits: Averages, transitions, and quasi-invariant sets. Maiocchi CC; Lucarini V; Gritsun A Chaos; 2022 Mar; 32(3):033129. PubMed ID: 35364825 [TBL] [Abstract][Full Text] [Related]
7. Manifold structures of unstable periodic orbits and the appearance of periodic windows in chaotic systems. Kobayashi MU; Saiki Y Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022904. PubMed ID: 25353542 [TBL] [Abstract][Full Text] [Related]
8. On infinite homoclinic orbits induced by unstable periodic orbits in the Lorenz system. Guo S; Luo ACJ Chaos; 2021 Apr; 31(4):043106. PubMed ID: 34251254 [TBL] [Abstract][Full Text] [Related]
9. Using periodic orbits to compute chaotic transport rates between resonance zones. Sattari S; Mitchell KA Chaos; 2017 Nov; 27(11):113104. PubMed ID: 29195324 [TBL] [Abstract][Full Text] [Related]
10. A New Pathology in the Simulation of Chaotic Dynamical Systems on Digital Computers. Boghosian BM; Coveney PV; Wang H Adv Theory Simul; 2019 Dec; 2(12):1900125. PubMed ID: 34527854 [TBL] [Abstract][Full Text] [Related]
11. Optimal periodic orbits of continuous time chaotic systems. Yang TH; Hunt BR; Ott E Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Aug; 62(2 Pt A):1950-9. PubMed ID: 11088659 [TBL] [Abstract][Full Text] [Related]
12. Unstable periodic orbits and the natural measure of nonhyperbolic chaotic saddles. Dhamala M; Lai YC Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Nov; 60(5 Pt B):6176-9. PubMed ID: 11970527 [TBL] [Abstract][Full Text] [Related]
13. Periodic orbit analysis at the onset of the unstable dimension variability and at the blowout bifurcation. Pereira RF; de S Pinto SE; Viana RL; Lopes SR; Grebogi C Chaos; 2007 Jun; 17(2):023131. PubMed ID: 17614685 [TBL] [Abstract][Full Text] [Related]
14. Network analysis of chaotic systems through unstable periodic orbits. Kobayashi MU; Saiki Y Chaos; 2017 Aug; 27(8):081103. PubMed ID: 28863482 [TBL] [Abstract][Full Text] [Related]
15. Sensitivity of long periodic orbits of chaotic systems. Lasagna D Phys Rev E; 2020 Nov; 102(5-1):052220. PubMed ID: 33327162 [TBL] [Abstract][Full Text] [Related]
17. Mixed-coexistence of periodic orbits and chaotic attractors in an inertial neural system with a nonmonotonic activation function. Song ZG; Xu J; Zhen B Math Biosci Eng; 2019 Jul; 16(6):6406-6425. PubMed ID: 31698569 [TBL] [Abstract][Full Text] [Related]
18. Construction of an associative memory using unstable periodic orbits of a chaotic attractor. Wagner C; Stucki JW J Theor Biol; 2002 Apr; 215(3):375-84. PubMed ID: 12054844 [TBL] [Abstract][Full Text] [Related]
19. Chaos computing in terms of periodic orbits. Kia B; Spano ML; Ditto WL Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 2):036207. PubMed ID: 22060475 [TBL] [Abstract][Full Text] [Related]
20. Cycling chaotic attractors in two models for dynamics with invariant subspaces. Ashwin P; Rucklidge AM; Sturman R Chaos; 2004 Sep; 14(3):571-82. PubMed ID: 15446967 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]