These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 37452198)

  • 21. Leakages suppression by isolating the desired quantum levels for high-temperature terahertz quantum cascade lasers.
    Wang L; Lin TT; Chen M; Wang K; Hirayama H
    Sci Rep; 2021 Dec; 11(1):23634. PubMed ID: 34880270
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Continuous-wave GaAs/AlGaAs quantum cascade laser at 5.7 THz.
    Shahili M; Addamane SJ; Kim AD; Curwen CA; Kawamura JH; Williams BS
    Nanophotonics; 2024 Apr; 13(10):1735-1743. PubMed ID: 38681679
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electronic temperatures of terahertz quantum cascade active regions with phonon scattering assisted injection and extraction scheme.
    Patimisco P; Scamarcio G; Santacroce MV; Spagnolo V; Vitiello MS; Dupont E; Laframboise SR; Fathololoumi S; Razavipour GS; Wasilewski Z
    Opt Express; 2013 Apr; 21(8):10172-81. PubMed ID: 23609722
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Detection of single human hairs with a terahertz nonlinear quantum cascade laser.
    Nakanishi A; Satozono H; Fujita K
    Appl Opt; 2020 Oct; 59(29):9169-9173. PubMed ID: 33104628
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Resonant two-photon terahertz quantum cascade laser.
    Talukder MA; Dean P; Linfield EH; Davies AG
    Opt Express; 2022 Aug; 30(18):31785-31794. PubMed ID: 36242253
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mid-infrared-pumped quantum cascade structure for high-sensitive terahertz detection.
    Xie Y; Yang N; Duan S; Chu W
    Opt Express; 2016 Jul; 24(14):15180-8. PubMed ID: 27410796
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of electron scattering by acoustic-phonons in two types of quantum wells with GaAs and GaN materials.
    Phong TC; Minh LN; Hien ND
    Nanoscale Adv; 2024 Jan; 6(3):832-845. PubMed ID: 38298586
    [TBL] [Abstract][Full Text] [Related]  

  • 28. THz Acoustic Spectroscopy by using Double Quantum Wells and Ultrafast Optical Spectroscopy.
    Wei FJ; Yeh YH; Sheu JK; Lin KH
    Sci Rep; 2016 Jun; 6():28577. PubMed ID: 27346494
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Coherent Excitation of Optical Phonons in GaAs by Broadband Terahertz Pulses.
    Fu Z; Yamaguchi M
    Sci Rep; 2016 Dec; 6():38264. PubMed ID: 27905563
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Terahertz electron-hole recollisions in GaAs/AlGaAs quantum wells: robustness to scattering by optical phonons and thermal fluctuations.
    Banks H; Zaks B; Yang F; Mack S; Gossard AC; Liu R; Sherwin MS
    Phys Rev Lett; 2013 Dec; 111(26):267402. PubMed ID: 24483813
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Intensive measures of luminescence in GaN/InGaN heterostructures.
    Hsiao JJ; Huang YJ; Chen HI; Jiang JA; Wang JC; Wu YF; Nee TE
    PLoS One; 2019; 14(9):e0222928. PubMed ID: 31550270
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Homogeneous spectral broadening of pulsed terahertz quantum cascade lasers by radio frequency modulation.
    Wan WJ; Li H; Cao JC
    Opt Express; 2018 Jan; 26(2):980-989. PubMed ID: 29401985
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thin active region HgCdTe-based quantum cascade laser with quasi-relativistic dispersion law.
    Dubinov AA; Ushakov DV; Afonenko AA; Khabibullin RA; Fadeev MA; Morozov SV
    Opt Lett; 2022 Oct; 47(19):5048-5051. PubMed ID: 36181183
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Heterostructure terahertz devices.
    Ryzhii V
    J Phys Condens Matter; 2008 Aug; 20(38):380301. PubMed ID: 21693805
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dual resonance phonon-photon-phonon terahertz quantum-cascade laser: physics of the electron transport and temperature performance optimization.
    Demić A; Ikonić Z; Dean P; Indjin D
    Opt Express; 2020 Dec; 28(26):38788-38812. PubMed ID: 33379440
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Polariton-driven phonon laser.
    Chafatinos DL; Kuznetsov AS; Anguiano S; Bruchhausen AE; Reynoso AA; Biermann K; Santos PV; Fainstein A
    Nat Commun; 2020 Sep; 11(1):4552. PubMed ID: 32917874
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electron Scattering via Interface Optical Phonons with High Group Velocity in Wurtzite GaN-based Quantum Well Heterostructure.
    Park K; Mohamed A; Dutta M; Stroscio MA; Bayram C
    Sci Rep; 2018 Oct; 8(1):15947. PubMed ID: 30374108
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Silver-based surface plasmon waveguide for terahertz quantum cascade lasers.
    Han YJ; Li LH; Zhu J; Valavanis A; Freeman JR; Chen L; Rosamond M; Dean P; Davies AG; Linfield EH
    Opt Express; 2018 Feb; 26(4):3814-3827. PubMed ID: 29475360
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-Power Growth-Robust InGaAs/InAlAs Terahertz Quantum Cascade Lasers.
    Deutsch C; Kainz MA; Krall M; Brandstetter M; Bachmann D; Schönhuber S; Detz H; Zederbauer T; MacFarland D; Andrews AM; Schrenk W; Beck M; Ohtani K; Faist J; Strasser G; Unterrainer K
    ACS Photonics; 2017 Apr; 4(4):957-962. PubMed ID: 28470028
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanoscale Quantum Thermal Conductance at Water Interface: Green's Function Approach Based on One-Dimensional Phonon Model.
    Umegaki T; Tanaka S
    Molecules; 2020 Mar; 25(5):. PubMed ID: 32151110
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.