BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 37452338)

  • 21. Applications of Artificial Intelligence to Electronic Health Record Data in Ophthalmology.
    Lin WC; Chen JS; Chiang MF; Hribar MR
    Transl Vis Sci Technol; 2020 Feb; 9(2):13. PubMed ID: 32704419
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Using Artificial Intelligence With Natural Language Processing to Combine Electronic Health Record's Structured and Free Text Data to Identify Nonvalvular Atrial Fibrillation to Decrease Strokes and Death: Evaluation and Case-Control Study.
    Elkin PL; Mullin S; Mardekian J; Crowner C; Sakilay S; Sinha S; Brady G; Wright M; Nolen K; Trainer J; Koppel R; Schlegel D; Kaushik S; Zhao J; Song B; Anand E
    J Med Internet Res; 2021 Nov; 23(11):e28946. PubMed ID: 34751659
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rapid Development of Specialty Population Registries and Quality Measures from Electronic Health Record Data*. An Agile Framework.
    Kannan V; Fish JS; Mutz JM; Carrington AR; Lai K; Davis LS; Youngblood JE; Rauschuber MR; Flores KA; Sara EJ; Bhat DG; Willett DL
    Methods Inf Med; 2017 Jun; 56(99):e74-e83. PubMed ID: 28930362
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Longitudinal Data Discontinuity in Electronic Health Records and Consequences for Medication Effectiveness Studies.
    Joshua Lin K; Jin Y; Gagne J; Glynn RJ; Murphy SN; Tong A; Schneeweiss S
    Clin Pharmacol Ther; 2022 Jan; 111(1):243-251. PubMed ID: 34424534
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A roadmap to artificial intelligence (AI): Methods for designing and building AI ready data to promote fairness.
    Kidwai-Khan F; Wang R; Skanderson M; Brandt CA; Fodeh S; Womack JA
    J Biomed Inform; 2024 Jun; 154():104654. PubMed ID: 38740316
    [TBL] [Abstract][Full Text] [Related]  

  • 26. From real-world electronic health record data to real-world results using artificial intelligence.
    Knevel R; Liao KP
    Ann Rheum Dis; 2023 Mar; 82(3):306-311. PubMed ID: 36150748
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [A customized method for information extraction from unstructured text data in the electronic medical records].
    Bao XY; Huang WJ; Zhang K; Jin M; Li Y; Niu CZ
    Beijing Da Xue Xue Bao Yi Xue Ban; 2018 Apr; 50(2):256-263. PubMed ID: 29643524
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Automating Access to Real-World Evidence.
    Gauthier MP; Law JH; Le LW; Li JJN; Zahir S; Nirmalakumar S; Sung M; Pettengell C; Aviv S; Chu R; Sacher A; Liu G; Bradbury P; Shepherd FA; Leighl NB
    JTO Clin Res Rep; 2022 Jun; 3(6):100340. PubMed ID: 35719866
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Applying interpretable deep learning models to identify chronic cough patients using EHR data.
    Luo X; Gandhi P; Zhang Z; Shao W; Han Z; Chandrasekaran V; Turzhitsky V; Bali V; Roberts AR; Metzger M; Baker J; La Rosa C; Weaver J; Dexter P; Huang K
    Comput Methods Programs Biomed; 2021 Oct; 210():106395. PubMed ID: 34525412
    [TBL] [Abstract][Full Text] [Related]  

  • 30. NeuroBlu, an electronic health record (EHR) trusted research environment (TRE) to support mental healthcare analytics with real-world data.
    Patel R; Wee SN; Ramaswamy R; Thadani S; Tandi J; Garg R; Calvanese N; Valko M; Rush AJ; RenterĂ­a ME; Sarkar J; Kollins SH
    BMJ Open; 2022 Apr; 12(4):e057227. PubMed ID: 35459671
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Harnessing Real-World Data for Regulatory Use and Applying Innovative Applications.
    Zou KH; Li JZ; Imperato J; Potkar CN; Sethi N; Edwards J; Ray A
    J Multidiscip Healthc; 2020; 13():671-679. PubMed ID: 32801731
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Automated extraction of ophthalmic surgery outcomes from the electronic health record.
    Wang SY; Pershing S; Tran E; Hernandez-Boussard T
    Int J Med Inform; 2020 Jan; 133():104007. PubMed ID: 31706228
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identifying Information Gaps in Electronic Health Records by Using Natural Language Processing: Gynecologic Surgery History Identification.
    Moon S; Carlson LA; Moser ED; Agnikula Kshatriya BS; Smith CY; Rocca WA; Gazzuola Rocca L; Bielinski SJ; Liu H; Larson NB
    J Med Internet Res; 2022 Jan; 24(1):e29015. PubMed ID: 35089141
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Using an artificial intelligence tool incorporating natural language processing to identify patients with a diagnosis of ANCA-associated vasculitis in electronic health records.
    van Leeuwen JR; Penne EL; Rabelink T; Knevel R; Teng YKO
    Comput Biol Med; 2024 Jan; 168():107757. PubMed ID: 38039893
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of a natural language processing algorithm to detect chronic cough in electronic health records.
    Bali V; Weaver J; Turzhitsky V; Schelfhout J; Paudel ML; Hulbert E; Peterson-Brandt J; Currie AG; Bakka D
    BMC Pulm Med; 2022 Jun; 22(1):256. PubMed ID: 35764999
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Extracting and integrating data from entire electronic health records for detecting colorectal cancer cases.
    Xu H; Fu Z; Shah A; Chen Y; Peterson NB; Chen Q; Mani S; Levy MA; Dai Q; Denny JC
    AMIA Annu Symp Proc; 2011; 2011():1564-72. PubMed ID: 22195222
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cohort profile: St. Michael's Hospital Tuberculosis Database (SMH-TB), a retrospective cohort of electronic health record data and variables extracted using natural language processing.
    Landsman D; Abdelbasit A; Wang C; Guerzhoy M; Joshi U; Mathew S; Pou-Prom C; Dai D; Pequegnat V; Murray J; Chokar K; Banning M; Mamdani M; Mishra S; Batt J
    PLoS One; 2021; 16(3):e0247872. PubMed ID: 33657184
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Validating an ontology-based algorithm to identify patients with type 2 diabetes mellitus in electronic health records.
    Rahimi A; Liaw ST; Taggart J; Ray P; Yu H
    Int J Med Inform; 2014 Oct; 83(10):768-78. PubMed ID: 25011429
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Real-World Evidence: A Primer.
    Dang A
    Pharmaceut Med; 2023 Jan; 37(1):25-36. PubMed ID: 36604368
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Using natural language processing to identify opioid use disorder in electronic health record data.
    Singleton J; Li C; Akpunonu PD; Abner EL; Kucharska-Newton AM
    Int J Med Inform; 2023 Feb; 170():104963. PubMed ID: 36521420
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.