These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 37452430)

  • 1. Reproducible evaluation of transposable element detectors with McClintock 2 guides accurate inference of Ty insertion patterns in yeast.
    Chen J; Basting PJ; Han S; Garfinkel DJ; Bergman CM
    Mob DNA; 2023 Jul; 14(1):8. PubMed ID: 37452430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reproducible evaluation of transposable element detectors with McClintock 2 guides accurate inference of Ty insertion patterns in yeast.
    Chen J; Basting PJ; Han S; Garfinkel DJ; Bergman CM
    bioRxiv; 2023 Mar; ():. PubMed ID: 36824955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. McClintock: An Integrated Pipeline for Detecting Transposable Element Insertions in Whole-Genome Shotgun Sequencing Data.
    Nelson MG; Linheiro RS; Bergman CM
    G3 (Bethesda); 2017 Aug; 7(8):2763-2778. PubMed ID: 28637810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RelocaTE2: a high resolution transposable element insertion site mapping tool for population resequencing.
    Chen J; Wrightsman TR; Wessler SR; Stajich JE
    PeerJ; 2017; 5():e2942. PubMed ID: 28149701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary genomics of transposable elements in Saccharomyces cerevisiae.
    Carr M; Bensasson D; Bergman CM
    PLoS One; 2012; 7(11):e50978. PubMed ID: 23226439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. T-lex3: an accurate tool to genotype and estimate population frequencies of transposable elements using the latest short-read whole genome sequencing data.
    Bogaerts-Márquez M; Barrón MG; Fiston-Lavier AS; Vendrell-Mir P; Castanera R; Casacuberta JM; González J
    Bioinformatics; 2020 Feb; 36(4):1191-1197. PubMed ID: 31580402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence.
    Kim JM; Vanguri S; Boeke JD; Gabriel A; Voytas DF
    Genome Res; 1998 May; 8(5):464-78. PubMed ID: 9582191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeted identification of TE insertions in a
    Zhang S; Kelleher ES
    Mob DNA; 2017; 8():10. PubMed ID: 28775768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ty1-copia elements reveal diverse insertion sites linked to polymorphisms among flax (Linum usitatissimum L.) accessions.
    Galindo-González L; Mhiri C; Grandbastien MA; Deyholos MK
    BMC Genomics; 2016 Dec; 17(1):1002. PubMed ID: 27927184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative genomics and evolutionary dynamics of Saccharomyces cerevisiae Ty elements.
    Jordan IK; McDonald JF
    Genetica; 1999; 107(1-3):3-13. PubMed ID: 10952193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HiTea: a computational pipeline to identify non-reference transposable element insertions in Hi-C data.
    Jain D; Chu C; Alver BH; Lee S; Lee EA; Park PJ
    Bioinformatics; 2021 May; 37(8):1045-1051. PubMed ID: 33136153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transposable Element Mobilization in Interspecific Yeast Hybrids.
    Smukowski Heil C; Patterson K; Hickey AS; Alcantara E; Dunham MJ
    Genome Biol Evol; 2021 Mar; 13(3):. PubMed ID: 33595639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ERVcaller: identifying polymorphic endogenous retrovirus and other transposable element insertions using whole-genome sequencing data.
    Chen X; Li D
    Bioinformatics; 2019 Oct; 35(20):3913-3922. PubMed ID: 30895294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Testing the Genomic Shock Hypothesis Using Transposable Element Expression in Yeast Hybrids.
    Drouin M; Hénault M; Hallin J; Landry CR
    Front Fungal Biol; 2021; 2():729264. PubMed ID: 37744137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TEMP: a computational method for analyzing transposable element polymorphism in populations.
    Zhuang J; Wang J; Theurkauf W; Weng Z
    Nucleic Acids Res; 2014 Jun; 42(11):6826-38. PubMed ID: 24753423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequencing of pooled DNA samples (Pool-Seq) uncovers complex dynamics of transposable element insertions in Drosophila melanogaster.
    Kofler R; Betancourt AJ; Schlötterer C
    PLoS Genet; 2012 Jan; 8(1):e1002487. PubMed ID: 22291611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-Wide Mapping of Yeast Retrotransposon Integration Target Sites.
    Barkova A; Asif-Laidin A; Lesage P
    Methods Enzymol; 2018; 612():197-223. PubMed ID: 30502942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A proposal for the reference-based annotation of de novo transposable element insertions.
    Bergman CM
    Mob Genet Elements; 2012 Jan; 2(1):51-54. PubMed ID: 22754753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Maximum-Likelihood Approach to Estimating the Insertion Frequencies of Transposable Elements from Population Sequencing Data.
    Jiang X; Tang H; Mohammed Ismail W; Lynch M
    Mol Biol Evol; 2018 Oct; 35(10):2560-2571. PubMed ID: 30099533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification, characterization and distribution of transposable elements in the flax (Linum usitatissimum L.) genome.
    González LG; Deyholos MK
    BMC Genomics; 2012 Nov; 13():644. PubMed ID: 23171245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.