These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 37452485)

  • 21. Multichromophoric organic molecules encapsulated in polymer nanoparticles for artificial light harvesting.
    Bhattacharyya S; Jana B; Patra A
    Chemphyschem; 2015 Mar; 16(4):796-804. PubMed ID: 25600650
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functionalized dye encapsulated polymer nanoparticles attached with a BSA scaffold as efficient antenna materials for artificial light harvesting.
    Jana B; Bhattacharyya S; Patra A
    Nanoscale; 2016 Sep; 8(35):16034-43. PubMed ID: 27546792
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Trackable Supramolecular Fusion: Cage to Cage Transformation of Tetraphenylethylene-Based Metalloassemblies.
    Li G; Zhou Z; Yuan C; Guo Z; Liu Y; Zhao D; Liu K; Zhao J; Tan H; Yan X
    Angew Chem Int Ed Engl; 2020 Jun; 59(25):10013-10017. PubMed ID: 32011799
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Coordination-Induced Emission from Tetraphenylethylene Units and Their Applications.
    Yu JG; Sun LY; Wang C; Li Y; Han YF
    Chemistry; 2021 Jan; 27(5):1556-1575. PubMed ID: 32588928
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Supramolecular Artificial Light-Harvesting System with an Ultrahigh Antenna Effect.
    Li JJ; Chen Y; Yu J; Cheng N; Liu Y
    Adv Mater; 2017 Aug; 29(30):. PubMed ID: 28585340
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Amphiphilicity-Controlled Polychromatic Emissive Supramolecular Self-Assemblies for Highly Sensitive and Efficient Artificial Light-Harvesting Systems.
    Chen XM; Cao KW; Bisoyi HK; Zhang S; Qian N; Guo L; Guo DS; Yang H; Li Q
    Small; 2022 Oct; 18(42):e2204360. PubMed ID: 36135778
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A new strategy for constructing artificial light-harvesting systems: supramolecular self-assembly gels with AIE properties.
    Ma X; Yue J; Wang Y; Gao Y; Qiao B; Feng E; Li Z; Ye F; Han X
    Soft Matter; 2021 Jun; 17(23):5666-5670. PubMed ID: 34095929
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Photophysical Properties of Organoplatinum(II) Compounds and Derived Self-Assembled Metallacycles and Metallacages: Fluorescence and its Applications.
    Saha ML; Yan X; Stang PJ
    Acc Chem Res; 2016 Nov; 49(11):2527-2539. PubMed ID: 27736060
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Conjugated Polymeric Supramolecular Network with Aggregation-Induced Emission Enhancement: An Efficient Light-Harvesting System with an Ultrahigh Antenna Effect.
    Xu L; Wang Z; Wang R; Wang L; He X; Jiang H; Tang H; Cao D; Tang BZ
    Angew Chem Int Ed Engl; 2020 Jun; 59(25):9908-9913. PubMed ID: 31336023
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Self-Assembly of Aggregation-Induced-Emission Molecules.
    Wu T; Huang J; Yan Y
    Chem Asian J; 2019 Mar; 14(6):730-750. PubMed ID: 30839162
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A supramolecular artificial light-harvesting system based on a luminescent platinum(II) metallacage.
    Wang N; Yang W; Feng L; Xu XD; Feng S
    Dalton Trans; 2023 Oct; 52(42):15524-15529. PubMed ID: 37622328
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient light harvesting in self-assembled organic luminescent nanotubes.
    Bhaumik SK; Maity D; Basu I; Chakrabarty S; Banerjee S
    Chem Sci; 2023 Apr; 14(16):4363-4374. PubMed ID: 37123195
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Emissive Molecular Aggregates and Energy Migration in Luminescent Solar Concentrators.
    Banal JL; Zhang B; Jones DJ; Ghiggino KP; Wong WW
    Acc Chem Res; 2017 Jan; 50(1):49-57. PubMed ID: 27992172
    [TBL] [Abstract][Full Text] [Related]  

  • 34. "Cage Walking" Synthetic Strategy for Unusual Unsymmetrical Supramolecular Cages.
    Liu XR; Cui PF; Guo ST; Lin YJ; Jin GX
    J Am Chem Soc; 2023 Apr; ():. PubMed ID: 37022992
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Coemissive luminescent nanoparticles combining aggregation-induced emission and quenching dyes prepared in continuous flow.
    Li C; Liu Q; Tao S
    Nat Commun; 2022 Oct; 13(1):6034. PubMed ID: 36229467
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Supramolecular Coordination Cages for Artificial Photosynthesis and Synthetic Photocatalysis.
    Ham R; Nielsen CJ; Pullen S; Reek JNH
    Chem Rev; 2023 May; 123(9):5225-5261. PubMed ID: 36662702
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Highly Efficient Artificial Light-Harvesting Systems Constructed in an Aqueous Solution Based on Twisted Cucurbit[14]Uril.
    Luo Y; Zhang W; Ren Q; Tao Z; Xiao X
    ACS Appl Mater Interfaces; 2022 Jul; 14(26):29806-29812. PubMed ID: 35748110
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficient Light-Harvesting Systems with Tunable Emission through Controlled Precipitation in Confined Nanospace.
    Li C; Zhang J; Zhang S; Zhao Y
    Angew Chem Int Ed Engl; 2019 Feb; 58(6):1643-1647. PubMed ID: 30418700
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synchronous Imaging in Golgi Apparatus and Lysosome Enabled by Amphiphilic Calixarene-Based Artificial Light-Harvesting Systems.
    Hou XF; Zhang S; Chen X; Bisoyi HK; Xu T; Liu J; Chen D; Chen XM; Li Q
    ACS Appl Mater Interfaces; 2022 May; 14(19):22443-22453. PubMed ID: 35513893
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems.
    Wasielewski MR
    Acc Chem Res; 2009 Dec; 42(12):1910-21. PubMed ID: 19803479
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.