These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 37452648)

  • 1. A contact model based on the coefficient of restitution for simulations of bio-prosthetic heart valves.
    Asadi H; Borazjani I
    Int J Numer Method Biomed Eng; 2023 Sep; 39(9):e3754. PubMed ID: 37452648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic simulation of bioprosthetic heart valves using a stress resultant shell model.
    Kim H; Lu J; Sacks MS; Chandran KB
    Ann Biomed Eng; 2008 Feb; 36(2):262-75. PubMed ID: 18046648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic simulation pericardial bioprosthetic heart valve function.
    Kim H; Lu J; Sacks MS; Chandran KB
    J Biomech Eng; 2006 Oct; 128(5):717-24. PubMed ID: 16995758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-linear rotation-free shell finite-element models for aortic heart valves.
    Gilmanov A; Stolarski H; Sotiropoulos F
    J Biomech; 2017 Jan; 50():56-62. PubMed ID: 27876370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of three-dimensional anisotropic heart valve tissue mechanical properties using inverse finite element analysis.
    Abbasi M; Barakat MS; Vahidkhah K; Azadani AN
    J Mech Behav Biomed Mater; 2016 Sep; 62():33-44. PubMed ID: 27173827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulated bioprosthetic heart valve deformation under quasi-static loading.
    Sun W; Abad A; Sacks MS
    J Biomech Eng; 2005 Nov; 127(6):905-14. PubMed ID: 16438226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fully coupled dynamic simulations of bioprosthetic aortic valves based on an embedded strategy for fluid-structure interaction with contact.
    Nestola MGC; Zulian P; Gaedke-Merzhäuser L; Krause R
    Europace; 2021 Mar; 23(23 Suppl 1):i96-i104. PubMed ID: 33751086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulating the time evolving geometry, mechanical properties, and fibrous structure of bioprosthetic heart valve leaflets under cyclic loading.
    Zhang W; Motiwale S; Hsu MC; Sacks MS
    J Mech Behav Biomed Mater; 2021 Nov; 123():104745. PubMed ID: 34482092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Asynchronous closure and leaflet impact velocity of bileaflet mechanical heart valves.
    Wu ZJ; Hwang NH
    J Heart Valve Dis; 1995 Jul; 4 Suppl 1():S38-49. PubMed ID: 8581210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An experimentally derived stress resultant shell model for heart valve dynamic simulations.
    Kim H; Chandran KB; Sacks MS; Lu J
    Ann Biomed Eng; 2007 Jan; 35(1):30-44. PubMed ID: 17089074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study on the Accuracy of Structural and FSI Heart Valves Simulations.
    Luraghi G; Migliavacca F; Rodriguez Matas JF
    Cardiovasc Eng Technol; 2018 Dec; 9(4):723-738. PubMed ID: 30132282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The important roles of tissue anisotropy and tissue-to-tissue contact on the dynamical behavior of a symmetric tri-leaflet valve during multiple cardiac pressure cycles.
    Saleeb AF; Kumar A; Thomas VS
    Med Eng Phys; 2013 Jan; 35(1):23-35. PubMed ID: 22483757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic impact stress analysis of a bileaflet mechanical heart valve.
    Yuan Q; Xu L; Ngoi BK; Yeo TJ; Hwang NH
    J Heart Valve Dis; 2003 Jan; 12(1):102-9. PubMed ID: 12578344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluid-Structure Interaction Study of Transcatheter Aortic Valve Dynamics Using Smoothed Particle Hydrodynamics.
    Mao W; Li K; Sun W
    Cardiovasc Eng Technol; 2016 Dec; 7(4):374-388. PubMed ID: 27844463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of transcatheter heart valve biomaterials: Computational modeling using bovine and porcine pericardium.
    Sulejmani F; Caballero A; Martin C; Pham T; Sun W
    J Mech Behav Biomed Mater; 2019 Sep; 97():159-170. PubMed ID: 31125889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advanced modeling strategy for the analysis of heart valve leaflet tissue mechanics using high-order finite element method.
    Mohammadi H; Bahramian F; Wan W
    Med Eng Phys; 2009 Nov; 31(9):1110-7. PubMed ID: 19773193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluid-Structure Interaction Models of Bioprosthetic Heart Valve Dynamics in an Experimental Pulse Duplicator.
    Lee JH; Rygg AD; Kolahdouz EM; Rossi S; Retta SM; Duraiswamy N; Scotten LN; Craven BA; Griffith BE
    Ann Biomed Eng; 2020 May; 48(5):1475-1490. PubMed ID: 32034607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic and fluid-structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models.
    Hsu MC; Kamensky D; Xu F; Kiendl J; Wang C; Wu MC; Mineroff J; Reali A; Bazilevs Y; Sacks MS
    Comput Mech; 2015 Jun; 55(6):1211-1225. PubMed ID: 26392645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of long-term fatigue damage in bioprosthetic heart valves: effects of leaflet and stent elastic properties.
    Martin C; Sun W
    Biomech Model Mechanobiol; 2014 Aug; 13(4):759-70. PubMed ID: 24092257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural simulations of prosthetic tri-leaflet aortic heart valves.
    Haj-Ali R; Dasi LP; Kim HS; Choi J; Leo HW; Yoganathan AP
    J Biomech; 2008; 41(7):1510-9. PubMed ID: 18395212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.