These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 37452655)

  • 1. Identifying a Universal Activity Descriptor and a Unifying Mechanism Concept on Perovskite Oxides for Green Hydrogen Production.
    Guan D; Xu H; Zhang Q; Huang YC; Shi C; Chang YC; Xu X; Tang J; Gu Y; Pao CW; Haw SC; Chen JM; Hu Z; Ni M; Shao Z
    Adv Mater; 2023 Nov; 35(44):e2305074. PubMed ID: 37452655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyrochlores for Advanced Oxygen Electrocatalysis.
    Gayen P; Saha S; Ramani V
    Acc Chem Res; 2022 Aug; 55(16):2191-2200. PubMed ID: 35878953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cations in Octahedral Sites: A Descriptor for Oxygen Electrocatalysis on Transition-Metal Spinels.
    Wei C; Feng Z; Scherer GG; Barber J; Shao-Horn Y; Xu ZJ
    Adv Mater; 2017 Jun; 29(23):. PubMed ID: 28394440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activity-Stability Relationships in Oxide Electrocatalysts for Water Electrolysis.
    Wohlgemuth M; Weber ML; Heymann L; Baeumer C; Gunkel F
    Front Chem; 2022; 10():913419. PubMed ID: 35815219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution.
    Grimaud A; Diaz-Morales O; Han B; Hong WT; Lee YL; Giordano L; Stoerzinger KA; Koper MTM; Shao-Horn Y
    Nat Chem; 2017 Jan; 9(5):457-465. PubMed ID: 28430191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Establishing theoretical landscapes for identifying basal plane active sites in MBene toward multifunctional HER, OER, and ORR catalysts.
    Zhang Y; Zhang Y; Guo Z; Fang Y; Tang C; Miao N; Sa B; Zhou J; Sun Z
    J Colloid Interface Sci; 2023 Dec; 652(Pt B):1954-1964. PubMed ID: 37690303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulating Excess Electrons in Reducible Metal Oxides for Enhanced Oxygen Evolution Reaction Activity: A Mini-Review.
    Huang X; Xu H
    Chemphyschem; 2024 Mar; 25(6):e202400081. PubMed ID: 38303551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metalloporphyrins as Catalytic Models for Studying Hydrogen and Oxygen Evolution and Oxygen Reduction Reactions.
    Li X; Lei H; Xie L; Wang N; Zhang W; Cao R
    Acc Chem Res; 2022 Mar; 55(6):878-892. PubMed ID: 35192330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Revealing the Correlation of OER with Magnetism: A New Descriptor of Curie/Neel Temperature for Magnetic Electrocatalysts.
    Li X; Bai Y; Cheng Z
    Adv Sci (Weinh); 2021 Sep; 8(17):e2101000. PubMed ID: 34227260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding the oxygen-evolution-reaction catalytic activity of metal oxides based on the intrinsic descriptors.
    Zheng KW; Li B; Li X; Gao W
    Phys Chem Chem Phys; 2022 Nov; 24(46):28632-28640. PubMed ID: 36416150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts.
    Subbaraman R; Tripkovic D; Chang KC; Strmcnik D; Paulikas AP; Hirunsit P; Chan M; Greeley J; Stamenkovic V; Markovic NM
    Nat Mater; 2012 May; 11(6):550-7. PubMed ID: 22561903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Perfect Imperfections in Electrocatalysts.
    Majee R; Parvin S; Arif Islam Q; Kumar A; Debnath B; Mondal S; Bhattacharjee S; Das S; Kumar A; Bhattacharyya S
    Chem Rec; 2022 Sep; 22(9):e202200070. PubMed ID: 35675947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-Assembled Ruddlesden-Popper/Perovskite Hybrid with Lattice-Oxygen Activation as a Superior Oxygen Evolution Electrocatalyst.
    Zhu Y; Lin Q; Hu Z; Chen Y; Yin Y; Tahini HA; Lin HJ; Chen CT; Zhang X; Shao Z; Wang H
    Small; 2020 May; 16(20):e2001204. PubMed ID: 32309914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles.
    Suntivich J; May KJ; Gasteiger HA; Goodenough JB; Shao-Horn Y
    Science; 2011 Dec; 334(6061):1383-5. PubMed ID: 22033519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Valence Oxides for High Performance Oxygen Evolution Electrocatalysis.
    Wang H; Zhai T; Wu Y; Zhou T; Zhou B; Shang C; Guo Z
    Adv Sci (Weinh); 2023 Aug; 10(22):e2301706. PubMed ID: 37253121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly active postspinel-structured catalysts for oxygen evolution reaction.
    Okazaki Y; Oda S; Takamatsu A; Kawaguchi S; Tsukasaki H; Mori S; Yagi S; Ikeno H; Yamada I
    RSC Adv; 2022 Feb; 12(9):5094-5104. PubMed ID: 35425573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering Lattice Oxygen Activation of Iridium Clusters Stabilized on Amorphous Bimetal Borides Array for Oxygen Evolution Reaction.
    Wang C; Zhai P; Xia M; Wu Y; Zhang B; Li Z; Ran L; Gao J; Zhang X; Fan Z; Sun L; Hou J
    Angew Chem Int Ed Engl; 2021 Dec; 60(52):27126-27134. PubMed ID: 34626056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hexagonal perovskite Sr
    Wei L; Hu J; Liu H; Zhang W; Zheng H; Wu S; Tang K
    Dalton Trans; 2022 May; 51(18):7100-7108. PubMed ID: 35451444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct evidence of boosted oxygen evolution over perovskite by enhanced lattice oxygen participation.
    Pan Y; Xu X; Zhong Y; Ge L; Chen Y; Veder JM; Guan D; O'Hayre R; Li M; Wang G; Wang H; Zhou W; Shao Z
    Nat Commun; 2020 Apr; 11(1):2002. PubMed ID: 32332731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Screening highly active perovskites for hydrogen-evolving reaction via unifying ionic electronegativity descriptor.
    Guan D; Zhou J; Huang YC; Dong CL; Wang JQ; Zhou W; Shao Z
    Nat Commun; 2019 Aug; 10(1):3755. PubMed ID: 31434892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.