These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 3745282)

  • 21. Time course and magnitude of synthesis of heat-shock proteins in congeneric marine snails (Genus tegula) from different tidal heights.
    Tomanek L; Somero GN
    Physiol Biochem Zool; 2000; 73(2):249-56. PubMed ID: 10801403
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Acute extracellular acidification reduces intracellular pH, 42 degrees C-induction of heat shock proteins and clonal survival of human melanoma cells grown at pH 6.7.
    Coss RA; Storck CW; Wachsberger PR; Reilly J; Leeper DB; Berd D; Wahl ML
    Int J Hyperthermia; 2004 Feb; 20(1):93-106. PubMed ID: 14612316
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Beta-adrenergic stimulation enhances the heat-shock response in fish.
    Currie S; Reddin K; McGinn P; McConnell T; Perry SF
    Physiol Biochem Zool; 2008; 81(4):414-25. PubMed ID: 18507532
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Two-dimensional gel analysis of the heat-shock response in marine snails (genus Tegula): interspecific variation in protein expression and acclimation ability.
    Tomanek L
    J Exp Biol; 2005 Aug; 208(Pt 16):3133-43. PubMed ID: 16081611
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Heat-shock gene expression and cell cycle changes during mammalian embryonic development.
    Walsh D; Li K; Wass J; Dolnikov A; Zeng F; Zhe L; Edwards M
    Dev Genet; 1993; 14(2):127-36. PubMed ID: 8482017
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of high-molecular-mass heat shock proteins and 42 degrees C-specific heat shock proteins of murine cells.
    Hatayama T; Yasuda K; Nishiyama E
    Biochem Biophys Res Commun; 1994 Oct; 204(1):357-65. PubMed ID: 7945382
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Physiologically relevant increase in temperature causes an increase in intestinal epithelial tight junction permeability.
    Dokladny K; Moseley PL; Ma TY
    Am J Physiol Gastrointest Liver Physiol; 2006 Feb; 290(2):G204-12. PubMed ID: 16407590
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Acute extracellular acidification increases nuclear associated protein levels in human melanoma cells during 42 degrees C hyperthermia and enhances cell killing.
    Han JS; Storck CW; Wachsberger PR; Leeper DB; Berd D; Wahl ML; Coss RA
    Int J Hyperthermia; 2002; 18(5):404-15. PubMed ID: 12227927
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of heat stress on development in vitro and in vivo and on synthesis of heat shock proteins in porcine embryos.
    Kojima T; Udagawa K; Onishi A; Iwahashi H; Komatsu Y
    Mol Reprod Dev; 1996 Apr; 43(4):452-7. PubMed ID: 9052936
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Arrhenius relationships from the molecule and cell to the clinic.
    Dewey WC
    Int J Hyperthermia; 2009 Feb; 25(1):3-20. PubMed ID: 19219695
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Heat shock in human neutrophils: superoxide generation is inhibited by a mechanism distinct from heat-denaturation of NADPH oxidase and is protected by heat shock proteins in thermotolerant cells.
    Maridonneau-Parini I; Malawista SE; Stubbe H; Russo-Marie F; Polla BS
    J Cell Physiol; 1993 Jul; 156(1):204-11. PubMed ID: 8391007
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of rate of heating on thermosensitivity of L1210 leukemia: membrane lipids and Mr 70,000 heat shock protein.
    Burns CP; Lambert BJ; Haugstad BN; Guffy MM
    Cancer Res; 1986 Apr; 46(4 Pt 1):1882-7. PubMed ID: 3948170
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Heat shock proteins increase resistance to apoptosis.
    Samali A; Cotter TG
    Exp Cell Res; 1996 Feb; 223(1):163-70. PubMed ID: 8635489
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Heat shock protein 70 in the rat nasal cavity: localisation and response to hyperthermia.
    Simpson SA; Alexander DJ; Reed CJ
    Arch Toxicol; 2004 Jun; 78(6):344-50. PubMed ID: 15007540
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Induction of a novel set of polypeptides by heat shock or sodium arsenite in cultured cells of rainbow trout, Salmo gairdnerii.
    Kothary RK; Candido EP
    Can J Biochem; 1982 Mar; 60(3):347-55. PubMed ID: 6805927
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Studies of eye lens in poikilothermal animals. III. Long-term incubation of rainbow trout lenses.
    Hikida M; Iwata S
    Jpn J Ophthalmol; 1986; 30(1):43-50. PubMed ID: 3723870
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermotolerance and the heat-shock response in Candida albicans.
    Zeuthen ML; Howard DH
    J Gen Microbiol; 1989 Sep; 135(9):2509-18. PubMed ID: 2697750
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Reproductive cycle of trout and tench: effect of experimental variations of the temperature (author's transl)].
    Breton B; Jalabert B; Fostier A; Billard R
    J Physiol (Paris); 1975 Dec; 70(5):561-4. PubMed ID: 1223260
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Factors influencing the heat shock response of Xenopus laevis embryos.
    Nickells RW; Browder LW; Wang TI
    Biochem Cell Biol; 1989 Oct; 67(10):687-95. PubMed ID: 2590525
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of temperature on the rainbow trout lens.
    Iwata S
    Curr Eye Res; 1985 Apr; 4(4):441-6. PubMed ID: 2990820
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.