These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 37453227)

  • 1. PI4KA and PIKfyve: Essential phosphoinositide signaling enzymes involved in myriad human diseases.
    Barlow-Busch I; Shaw AL; Burke JE
    Curr Opin Cell Biol; 2023 Aug; 83():102207. PubMed ID: 37453227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural basis for the conserved roles of PI4KA and its regulatory partners and their misregulation in disease.
    Suresh S; Burke JE
    Adv Biol Regul; 2023 Dec; 90():100996. PubMed ID: 37979461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural Basis for Regulation of Phosphoinositide Kinases and Their Involvement in Human Disease.
    Burke JE
    Mol Cell; 2018 Sep; 71(5):653-673. PubMed ID: 30193094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into Lysosomal PI(3,5)P
    Lees JA; Li P; Kumar N; Weisman LS; Reinisch KM
    Mol Cell; 2020 Nov; 80(4):736-743.e4. PubMed ID: 33098764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel roles of phosphoinositides in signaling, lipid transport, and disease.
    Hammond GRV; Burke JE
    Curr Opin Cell Biol; 2020 Apr; 63():57-67. PubMed ID: 31972475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The amyloid precursor protein (APP) binds the PIKfyve complex and modulates its function.
    Currinn H; Wassmer T
    Biochem Soc Trans; 2016 Feb; 44(1):185-90. PubMed ID: 26862204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PIP5K1C phosphoinositide kinase deficiency distinguishes PIKFYVE-dependent cancer cells from non-malignant cells.
    Roy A; Chakraborty AR; Nomanbhoy T; DePamphilis ML
    Autophagy; 2023 Sep; 19(9):2464-2484. PubMed ID: 36803256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of lipid kinase PIKfyve reveals a role for phosphatase Inpp4b in the regulation of PI(3)P-mediated lysosome dynamics through VPS34 activity.
    Saffi GT; Wang CA; Mangialardi EM; Vacher J; Botelho RJ; Salmena L
    J Biol Chem; 2022 Aug; 298(8):102187. PubMed ID: 35760104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipid kinases VPS34 and PIKfyve coordinate a phosphoinositide cascade to regulate retriever-mediated recycling on endosomes.
    Giridharan SSP; Luo G; Rivero-Rios P; Steinfeld N; Tronchere H; Singla A; Burstein E; Billadeau DD; Sutton MA; Weisman LS
    Elife; 2022 Jan; 11():. PubMed ID: 35040777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Roles of PIKfyve in multiple cellular pathways.
    Rivero-Ríos P; Weisman LS
    Curr Opin Cell Biol; 2022 Jun; 76():102086. PubMed ID: 35584589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Lipid Kinase PIKfyve Coordinates the Neutrophil Immune Response through the Activation of the Rac GTPase.
    Dayam RM; Sun CX; Choy CH; Mancuso G; Glogauer M; Botelho RJ
    J Immunol; 2017 Sep; 199(6):2096-2105. PubMed ID: 28779020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of Phosphoinositide Signaling by Scaffolds at Cytoplasmic Membranes.
    Wen T; Thapa N; Cryns VL; Anderson RA
    Biomolecules; 2023 Aug; 13(9):. PubMed ID: 37759697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular mechanisms of PI4K regulation and their involvement in viral replication.
    McPhail JA; Burke JE
    Traffic; 2023 Mar; 24(3):131-145. PubMed ID: 35579216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PIKfyve Deficiency in Myeloid Cells Impairs Lysosomal Homeostasis in Macrophages and Promotes Systemic Inflammation in Mice.
    Min SH; Suzuki A; Weaver L; Guzman J; Chung Y; Jin H; Gonzalez F; Trasorras C; Zhao L; Spruce LA; Seeholzer SH; Behrens EM; Abrams CS
    Mol Cell Biol; 2019 Nov; 39(21):. PubMed ID: 31427458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphoinositides, Major Actors in Membrane Trafficking and Lipid Signaling Pathways.
    De Craene JO; Bertazzi DL; Bär S; Friant S
    Int J Mol Sci; 2017 Mar; 18(3):. PubMed ID: 28294977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PIKfyve-Dependent Phosphoinositide Dynamics in Megakaryocyte/Platelet Granule Integrity and Platelet Functions.
    Caux M; Mansour R; Xuereb JM; Chicanne G; Viaud J; Vauclard A; Boal F; Payrastre B; Tronchère H; Severin S
    Arterioscler Thromb Vasc Biol; 2022 Aug; 42(8):987-1004. PubMed ID: 35708031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active vacuolar H+ ATPase and functional cycle of Rab5 are required for the vacuolation defect triggered by PtdIns(3,5)P2 loss under PIKfyve or Vps34 deficiency.
    Compton LM; Ikonomov OC; Sbrissa D; Garg P; Shisheva A
    Am J Physiol Cell Physiol; 2016 Sep; 311(3):C366-77. PubMed ID: 27335171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of PIKfyve Leads to Lysosomal Disorders via Dysregulation of mTOR Signaling.
    Xia J; Wang H; Zhong Z; Jiang J
    Cells; 2024 May; 13(11):. PubMed ID: 38891085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphatidylinositol Kinases and Phosphatases in
    Nakada-Tsukui K; Watanabe N; Maehama T; Nozaki T
    Front Cell Infect Microbiol; 2019; 9():150. PubMed ID: 31245297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Plethora of Functions Condensed into Tiny Phospholipids: The Story of PI4P and PI(4,5)P
    Bura A; Čabrijan S; Đurić I; Bruketa T; Jurak Begonja A
    Cells; 2023 May; 12(10):. PubMed ID: 37408244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.