These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 37453239)

  • 21. Exploring 3-Benzyloxyflavones as new lead cholinesterase inhibitors: synthesis, structure-activity relationship and molecular modelling simulations.
    Mughal EU; Sadiq A; Ayub M; Naeem N; Javid A; Sumrra SH; Zafar MN; Khan BA; Malik FP; Ahmed I
    J Biomol Struct Dyn; 2021 Oct; 39(16):6154-6167. PubMed ID: 32752941
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Amiridine-piperazine hybrids as cholinesterase inhibitors and potential multitarget agents for Alzheimer's disease treatment.
    Makhaeva GF; Lushchekina SV; Kovaleva NV; Yu Astakhova T; Boltneva NP; Rudakova EV; Serebryakova OG; Proshin AN; Serkov IV; Trofimova TP; Tafeenko VA; Radchenko EV; Palyulin VA; Fisenko VP; Korábečný J; Soukup O; Richardson RJ
    Bioorg Chem; 2021 Jul; 112():104974. PubMed ID: 34029971
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis, molecular docking and molecular dynamics studies of novel tacrine-carbamate derivatives as potent cholinesterase inhibitors.
    Ozten O; Zengin Kurt B; Sonmez F; Dogan B; Durdagi S
    Bioorg Chem; 2021 Oct; 115():105225. PubMed ID: 34364052
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Flavonols and 4-thioflavonols as potential acetylcholinesterase and butyrylcholinesterase inhibitors: Synthesis, structure-activity relationship and molecular docking studies.
    Mughal EU; Sadiq A; Ashraf J; Zafar MN; Sumrra SH; Tariq R; Mumtaz A; Javid A; Khan BA; Ali A; Javed CO
    Bioorg Chem; 2019 Oct; 91():103124. PubMed ID: 31319297
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Novel cinnamic acid-tryptamine hybrids as potent butyrylcholinesterase inhibitors: Synthesis, biological evaluation, and docking study.
    Ghafary S; Najafi Z; Mohammadi-Khanaposhtani M; Nadri H; Edraki N; Ayashi N; Larijani B; Amini M; Mahdavi M
    Arch Pharm (Weinheim); 2018 Oct; 351(10):e1800115. PubMed ID: 30284339
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metal-free synthesis of functionalized tacrine derivatives and their evaluation for acetyl/butyrylcholinesterase and α-glucosidase inhibition.
    Shirisha T; Majhi S; Divakar K; Kashinath D
    Org Biomol Chem; 2024 Jan; 22(4):790-804. PubMed ID: 38167698
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis of 4-substituted benzyl-2-triazole-linked-tryptamine-paeonol derivatives and evaluation of their selective inhibitions against butyrylcholinesterase and monoamine oxidase-B.
    Oh JM; Kang Y; Hwang JH; Park JH; Shin WH; Mun SK; Lee JU; Yee ST; Kim H
    Int J Biol Macromol; 2022 Sep; 217():910-921. PubMed ID: 35908673
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis and biological evaluation of novel tacrine derivatives and tacrine-coumarin hybrids as cholinesterase inhibitors.
    Hamulakova S; Janovec L; Hrabinova M; Spilovska K; Korabecny J; Kristian P; Kuca K; Imrich J
    J Med Chem; 2014 Aug; 57(16):7073-84. PubMed ID: 25089370
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In silico and in vitro studies confirm Ondansetron as a novel acetylcholinesterase and butyrylcholinesterase inhibitor.
    Gholami A; Minai-Tehrani D; Eriksson LA
    Sci Rep; 2023 Jan; 13(1):643. PubMed ID: 36635365
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A cascade synthesis, in vitro cholinesterases inhibitory activity and docking studies of novel Tacrine-pyranopyrazole derivatives.
    Derabli C; Boualia I; Abdelwahab AB; Boulcina R; Bensouici C; Kirsch G; Debache A
    Bioorg Med Chem Lett; 2018 Aug; 28(14):2481-2484. PubMed ID: 29887354
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Novel Tacrine-Based Pyrano[3',4':5,6]pyrano[2,3-b]quinolinones: Synthesis and Cholinesterase Inhibitory Activity.
    Hariri R; Afshar Z; Mahdavi M; Safavi M; Saeedi M; Najafi Z; Sabourian R; Karimpour-Razkenari E; Edraki N; Moghadam FH; Shafiee A; Khanavi M; Akbarzadeh T
    Arch Pharm (Weinheim); 2016 Dec; 349(12):915-924. PubMed ID: 27910192
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis, in silico and in vitro studies of hydrazide-hydrazone imine derivatives as potential cholinesterase inhibitors.
    Güngör SA
    Chem Biol Drug Des; 2023 Oct; 102(4):676-691. PubMed ID: 37258044
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of New Chromenone Derivatives as Cholinesterase Inhibitors and Molecular Docking Studies.
    Iqbal J; Abbasi MSA; Zaib S; Afridi S; Furtmann N; Bajorath J; Langer P
    Med Chem; 2018; 14(8):809-817. PubMed ID: 29473519
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Highly functionalized 2-amino-4H-pyrans as potent cholinesterase inhibitors.
    Kumar RS; Almansour AI; Arumugam N; Al-Thamili DM; Basiri A; Kotresha D; Manohar TS; Venketesh S; Asad M; Asiri AM
    Bioorg Chem; 2018 Dec; 81():134-143. PubMed ID: 30121001
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design, synthesis, evaluation and molecular modeling study of 4-N-phenylaminoquinolines for Alzheimer disease treatment.
    Zhu J; Wang LN; Cai R; Geng SQ; Dong YF; Liu YM
    Bioorg Med Chem Lett; 2019 Jun; 29(11):1325-1329. PubMed ID: 30956012
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bis-Amiridines as Acetylcholinesterase and Butyrylcholinesterase Inhibitors:
    Makhaeva GF; Kovaleva NV; Boltneva NP; Rudakova EV; Lushchekina SV; Astakhova TY; Serkov IV; Proshin AN; Radchenko EV; Palyulin VA; Korabecny J; Soukup O; Bachurin SO; Richardson RJ
    Molecules; 2022 Feb; 27(3):. PubMed ID: 35164325
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of Potent and Selective Acetylcholinesterase/Butyrylcholinesterase Inhibitors by Virtual Screening.
    Xu T; Li S; Li AJ; Zhao J; Sakamuru S; Huang W; Xia M; Huang R
    J Chem Inf Model; 2023 Apr; 63(8):2321-2330. PubMed ID: 37011147
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design and synthesis of some new carboxamide and propanamide derivatives bearing phenylpyridazine as a core ring and the investigation of their inhibitory potential on in-vitro acetylcholinesterase and butyrylcholinesterase.
    Kilic B; Gulcan HO; Aksakal F; Ercetin T; Oruklu N; Umit Bagriacik E; Dogruer DS
    Bioorg Chem; 2018 Sep; 79():235-249. PubMed ID: 29775949
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis and structure-activity relationship study of tacrine-based pyrano[2,3-c]pyrazoles targeting AChE/BuChE and 15-LOX.
    Pourabdi L; Khoobi M; Nadri H; Moradi A; Moghadam FH; Emami S; Mojtahedi MM; Haririan I; Forootanfar H; Ameri A; Foroumadi A; Shafiee A
    Eur J Med Chem; 2016 Nov; 123():298-308. PubMed ID: 27484515
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Syntheses, cholinesterases inhibition, and molecular docking studies of pyrido[2,3-b]pyrazine derivatives.
    Hameed A; Zehra ST; Shah SJ; Khan KM; Alharthy RD; Furtmann N; Bajorath J; Tahir MN; Iqbal J
    Chem Biol Drug Des; 2015 Nov; 86(5):1115-20. PubMed ID: 25951978
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.