These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 37453307)

  • 1. Influences and mechanisms of pyrolytic conditions on recycling BTX products from passenger car waste tires.
    Zheng D; Cheng J; Wang X; Yu G; Xu R; Dai C; Liu N; Wang N; Chen B
    Waste Manag; 2023 Sep; 169():196-207. PubMed ID: 37453307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of passenger-car-waste-tire pyrolysis: Behavior and mechanism under kinetical regime.
    Zheng D; Cheng J; Dai C; Xu R; Wang X; Liu N; Wang N; Yu G; Chen B
    Waste Manag; 2022 Jul; 148():71-82. PubMed ID: 35667238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dataset from analytical pyrolysis assays for converting waste tires into valuable chemicals in the presence of noble-metal catalysts.
    Azócar BS; Vargas PO; Campos C; Medina F; Arteaga-Pérez LE
    Data Brief; 2022 Feb; 40():107745. PubMed ID: 35005140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation Mechanism of Monocyclic Aromatic Hydrocarbons during Pyrolysis of Styrene Butadiene Rubber in Waste Passenger Car Tires.
    Li J; Zheng D; Yao Z; Wang S; Xu R; Deng S; Chen B; Wang J
    ACS Omega; 2022 Nov; 7(47):42890-42900. PubMed ID: 36467943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BTEX recovery from waste rubbers by catalytic pyrolysis over Zn loaded tire derived char.
    Pan Y; Sima J; Wang X; Zhou Y; Huang Q
    Waste Manag; 2021 Jul; 131():214-225. PubMed ID: 34167041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From waste tire to high value-added chemicals: an analytical Py-GC/TOF-MS study.
    Wang ZC; Duan PG; Wang K
    Environ Sci Pollut Res Int; 2022 Oct; 29(48):72117-72125. PubMed ID: 34984613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adjusting effects of pyrolytic volatiles interaction in char to upgrade oil by swelling waste nylon-tire.
    Huang R; Ren Q; Zhang J; He L; Su S; Wang Y; Jiang L; Xu J; Hu S; Xiang J
    Waste Manag; 2023 Sep; 169():374-381. PubMed ID: 37527617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flash Pyrolysis of Waste Tires in an Entrained Flow Reactor-An Experimental Study.
    Ramani B; Anjum A; Bramer E; Dierkes W; Blume A; Brem G
    Polymers (Basel); 2024 Jun; 16(12):. PubMed ID: 38932095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Waste tire pyrolysis and desulfurization of tire pyrolytic oil (TPO) - A review.
    Mello M; Rutto H; Seodigeng T
    J Air Waste Manag Assoc; 2023 Mar; 73(3):159-177. PubMed ID: 36269581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic pyrolysis of car tire waste using expanded perlite.
    Kar Y
    Waste Manag; 2011 Aug; 31(8):1772-82. PubMed ID: 21543218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of physicochemical properties of metal modified ZSM-5 catalyst on benzene, toluene and xylene production from biomass catalytic pyrolysis.
    Che Q; Yang M; Wang X; Yang Q; Rose Williams L; Yang H; Zou J; Zeng K; Zhu Y; Chen Y; Chen H
    Bioresour Technol; 2019 Apr; 278():248-254. PubMed ID: 30708327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of CaO from waste shells for microwave-assisted catalytic pyrolysis of waste cooking oil to produce aromatic-rich bio-oil.
    Zhang S; Xiong J; Lu J; Zhou N; Li H; Cui X; Zhang Q; Liu Y; Ruan R; Wang Y
    Sci Total Environ; 2022 Jun; 827():154186. PubMed ID: 35231512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Upgrading pyrolytic residue from waste tires to commercial carbon black.
    Zhang X; Li H; Cao Q; Jin L; Wang F
    Waste Manag Res; 2018 May; 36(5):436-444. PubMed ID: 29589516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Replacing commercial carbon black by pyrolytic residue from waste tire for tire processing: Technically feasible and economically reasonable.
    Xu J; Yu J; He W; Huang J; Xu J; Li G
    Sci Total Environ; 2021 Nov; 793():148597. PubMed ID: 34182453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic pyrolysis behaviors, products, and mechanisms of waste rubber and polyurethane bicycle tires.
    Tang X; Chen Z; Liu J; Chen Z; Xie W; Evrendilek F; Buyukada M
    J Hazard Mater; 2021 Jan; 402():123516. PubMed ID: 32739726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs) mitigation in the pyrolysis process of waste tires using CO₂ as a reaction medium.
    Kwon EE; Oh JI; Kim KH
    J Environ Manage; 2015 Sep; 160():306-11. PubMed ID: 26117814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of molten salt thermal treatment on the properties improvement of waste tire pyrolytic char.
    Zou C; Ren Y; Li S; Hu H; Cao C; Tang H; Li X; Yao H
    Waste Manag; 2022 Jul; 149():53-59. PubMed ID: 35714436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation behavior of PAHs during pyrolysis of waste tires.
    Ye W; Xu X; Zhan M; Huang Q; Li X; Jiao W; Yin Y
    J Hazard Mater; 2022 Aug; 435():128997. PubMed ID: 35490634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of benzene/toluene/ethyl benzene/xylene (BTEX) via multiphase catalytic pyrolysis of hazardous waste polyethylene using low cost fly ash synthesized natural catalyst.
    Gaurh P; Pramanik H
    Waste Manag; 2018 Jul; 77():114-130. PubMed ID: 30008401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic upgrading of Quercus Mongolica under methane environment to obtain high yield of bioaromatics.
    Farooq A; Moogi S; Kwon EE; Lee J; Kim YM; Jae J; Jung SC; Park YK
    Environ Pollut; 2021 Mar; 272():116016. PubMed ID: 33248830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.