BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 37453320)

  • 1. Establishing an orbital-level understanding of active origins of heteroatom-coordinated single-atom catalysts: The case of N
    Zhang Y; Wang Y; Ma N; Li Y; Liang B; Luo S; Fan J
    J Colloid Interface Sci; 2023 Nov; 650(Pt A):961-971. PubMed ID: 37453320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-Atom Anchored g-C
    Chai H; Chen W; Feng Z; Li Y; Zhao M; Shi J; Tang Y; Dai X
    Nanomaterials (Basel); 2023 Apr; 13(8):. PubMed ID: 37111017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-Atom Low-Valent Alkaline-Earth-Metal Catalysts for Electrochemical Nitrogen Reduction with an Acceptance-Backdonation Mechanism.
    Wen Z; Lv H; Wu X
    ACS Appl Mater Interfaces; 2022 Nov; 14(46):52079-52086. PubMed ID: 36356233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Axial heteroatom (P, S and Cl)-decorated Fe single-atom catalyst for the oxygen reduction reaction: a DFT study.
    Xue Q; Qi X; Li K; Zeng Y; Xu F; Zhang K; Qi X; Li L; Cabot A
    RSC Adv; 2024 May; 14(23):16379-16388. PubMed ID: 38774610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing the NRR activity of single and double boron atom catalysts using a suitable support: a first principles investigation.
    Rasool A; Anis I; Bhat SA; Dar MA
    Phys Chem Chem Phys; 2023 Aug; 25(33):22275-22285. PubMed ID: 37577857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Harnessing halogen bond donors for enhanced nitrogen reduction: a case study on metal-free boron nitride single-atom catalysts.
    Choutipalli VSK; Subramanian V
    Phys Chem Chem Phys; 2024 Apr; 26(16):12495-12509. PubMed ID: 38600843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Can N, S Cocoordination Promote Single Atom Catalyst Performance in CO
    Cao S; Wei S; Wei X; Zhou S; Chen H; Hu Y; Wang Z; Liu S; Guo W; Lu X
    Small; 2021 Jul; 17(29):e2100949. PubMed ID: 34145743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Building Up a Picture of the Electrocatalytic Nitrogen Reduction Activity of Transition Metal Single-Atom Catalysts.
    Liu X; Jiao Y; Zheng Y; Jaroniec M; Qiao SZ
    J Am Chem Soc; 2019 Jun; 141(24):9664-9672. PubMed ID: 31145607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Termination effects of single-atom decorated v-Mo
    Zhai X; Dong H; Li Y; Yang X; Li L; Yang J; Zhang Y; Zhang J; Yan H; Ge G
    J Colloid Interface Sci; 2022 Jan; 605():897-905. PubMed ID: 34371433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergistic Effect of Boron Nitride and Carbon Domains in Boron Carbide Nitride Nanotube Supported Single-Atom Catalysts for Efficient Nitrogen Fixation.
    Liu T; Dang Q; Zhou X; Li J; Ge Z; Che H; Tang S; Luo Y; Jiang J
    Chemistry; 2021 Apr; 27(23):6945-6953. PubMed ID: 33565653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tuning the electronic structure of transition metals embedded in nitrogen-doped graphene for electrocatalytic nitrogen reduction: a first-principles study.
    Zheng X; Yao Y; Wang Y; Liu Y
    Nanoscale; 2020 May; 12(17):9696-9707. PubMed ID: 32323698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption mechanism of the N
    Genç AE; Tranca IC
    Phys Chem Chem Phys; 2023 Jul; 25(27):18465-18480. PubMed ID: 37401802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuning the catalytic activity of a single Mo atom supported on graphene for nitrogen reduction via Se atom doping.
    Zhou HY; Li JC; Wen Z; Jiang Q
    Phys Chem Chem Phys; 2019 Jul; 21(27):14583-14588. PubMed ID: 31241647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational Design of Transition Metal Single-Atom Electrocatalysts on PtS
    Cai L; Zhang N; Qiu B; Chai Y
    ACS Appl Mater Interfaces; 2020 May; 12(18):20448-20455. PubMed ID: 32285656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective Orbital Coupling: An Adsorption Mechanism in Single-Atom Catalysis.
    He C; Lee CH; Meng L; Chen HT; Li Z
    J Am Chem Soc; 2024 May; 146(18):12395-12400. PubMed ID: 38682244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulating the coordination environment of single-atom catalysts for electrocatalytic CO
    Lu S; Lou F; Zhao Y; Yu Z
    J Colloid Interface Sci; 2023 Sep; 646():301-310. PubMed ID: 37201458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anchoring an Fe Dimer on Nitrogen-Doped Graphene toward Highly Efficient Electrocatalytic Ammonia Synthesis.
    Zhang Z; Huang X; Xu H
    ACS Appl Mater Interfaces; 2021 Sep; 13(36):43632-43640. PubMed ID: 34460221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coordination Environment Engineering to Regulate the Adsorption Strength of Intermediates in Single Atom Catalysts for High-performance CO
    Wang M; Kong L; Lu X; Wu CL
    Small; 2024 Jan; ():e2310339. PubMed ID: 38295011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intermediates-induced CO
    Liu K; Ni G; Luo T; Fu J; Li H; Liu M; Lin Z
    Chemphyschem; 2023 Oct; 24(19):e202300050. PubMed ID: 37466365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights into the activity of single-atom Fe-N-C catalysts for oxygen reduction reaction.
    Liu K; Fu J; Lin Y; Luo T; Ni G; Li H; Lin Z; Liu M
    Nat Commun; 2022 Apr; 13(1):2075. PubMed ID: 35440574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.