These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 37453525)

  • 1. Wastewater treatment by using microalgae: Insights into fate, transport, and associated challenges.
    Ali A; Khalid Z; Ahmed A A; Ajarem JS
    Chemosphere; 2023 Oct; 338():139501. PubMed ID: 37453525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Progress and challenges of contaminate removal from wastewater using microalgae biomass.
    Ahmed SF; Mofijur M; Parisa TA; Islam N; Kusumo F; Inayat A; Le VG; Badruddin IA; Khan TMY; Ong HC
    Chemosphere; 2022 Jan; 286(Pt 1):131656. PubMed ID: 34325255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Copper multifaceted interferences during swine wastewater treatment in high-rate algal ponds: alterations on nutrient removal, biomass composition and resource recovery.
    Oliveira APS; Assemany P; Covell L; Calijuri ML
    Environ Pollut; 2023 May; 324():121364. PubMed ID: 36849087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advancement on mixed microalgal-bacterial cultivation systems for nitrogen and phosphorus recoveries from wastewater to promote sustainable bioeconomy.
    Janpum C; Pombubpa N; Monshupanee T; Incharoensakdi A; In-Na P
    J Biotechnol; 2022 Dec; 360():198-210. PubMed ID: 36414126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrogen availability influences phosphorus removal in microalgae-based wastewater treatment.
    Beuckels A; Smolders E; Muylaert K
    Water Res; 2015 Jun; 77():98-106. PubMed ID: 25863319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microalgae systems - environmental agents for wastewater treatment and further potential biomass valorisation.
    Amaro HM; Salgado EM; Nunes OC; Pires JCM; Esteves AF
    J Environ Manage; 2023 Jul; 337():117678. PubMed ID: 36948147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microalgae-based advanced municipal wastewater treatment for reuse in water bodies.
    Wang JH; Zhang TY; Dao GH; Xu XQ; Wang XX; Hu H-
    Appl Microbiol Biotechnol; 2017 Apr; 101(7):2659-2675. PubMed ID: 28213735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microalgae-mediated bioremediation: current trends and opportunities-a review.
    Ali SS; Hassan LHS; El-Sheekh M
    Arch Microbiol; 2024 Jul; 206(8):343. PubMed ID: 38967670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of light presence and biomass concentration on nutrient kinetic removal from urban wastewater by Scenedesmus obliquus.
    Ruiz J; Arbib Z; Alvarez-Díaz PD; Garrido-Pérez C; Barragán J; Perales JA
    J Biotechnol; 2014 May; 178():32-7. PubMed ID: 24631723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Auto-flocculation through cultivation of Chlorella vulgaris in seafood wastewater discharge: Influence of culture conditions on microalgae growth and nutrient removal.
    Nguyen TDP; Tran TNT; Le TVA; Nguyen Phan TX; Show PL; Chia SR
    J Biosci Bioeng; 2019 Apr; 127(4):492-498. PubMed ID: 30416001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Advances in biological wastewater treatment technology of microalgae.].
    Pan Y; Wang HS; Liu ZW; Yan H
    Ying Yong Sheng Tai Xue Bao; 2019 Jul; 30(7):2490-2500. PubMed ID: 31418252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wastewater treatment for nutrient removal with Ecuadorian native microalgae.
    Benítez MB; Champagne P; Ramos A; Torres AF; Ochoa-Herrera V
    Environ Technol; 2019 Sep; 40(22):2977-2985. PubMed ID: 29600735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Purification Effect of Piggery Wastewater with
    Wang YZ; Cheng PF; Liu DF; Liu TZ
    Huan Jing Ke Xue; 2017 Aug; 38(8):3354-3361. PubMed ID: 29964944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Treatment of clean in place (CIP) wastewater using microalgae: Nutrient upcycling and value-added byproducts production.
    Su Y; Jacobsen C
    Sci Total Environ; 2021 Sep; 785():147337. PubMed ID: 33932664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent progress in microalgae-derived biochar for the treatment of textile industry wastewater.
    Khan AA; Gul J; Naqvi SR; Ali I; Farooq W; Liaqat R; AlMohamadi H; Štěpanec L; Juchelková D
    Chemosphere; 2022 Nov; 306():135565. PubMed ID: 35793745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Revisiting carbon, nitrogen, and phosphorus metabolisms in microalgae for wastewater treatment.
    Su Y
    Sci Total Environ; 2021 Mar; 762():144590. PubMed ID: 33360454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental study and parameters optimization of microalgae based heavy metals removal process using a hybrid response surface methodology-crow search algorithm.
    Sultana N; Hossain SMZ; Mohammed ME; Irfan MF; Haq B; Faruque MO; Razzak SA; Hossain MM
    Sci Rep; 2020 Sep; 10(1):15068. PubMed ID: 32934284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nutrient and heavy metal removal from piggery wastewater and CH
    Guo G; Guan J; Sun S; Liu J; Zhao Y
    Water Environ Res; 2020 Jun; 92(6):922-933. PubMed ID: 31837273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microalgae as promising source for integrated wastewater treatment and biodiesel production.
    Fal S; Benhima R; El Mernissi N; Kasmi Y; Smouni A; El Arroussi H
    Int J Phytoremediation; 2022; 24(1):34-46. PubMed ID: 34000939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Swine wastewater treatment in high rate algal ponds: Effects of Cu and Zn on nutrient removal, productivity and biomass composition.
    Oliveira APS; Assemany P; Ribeiro Júnior JI; Covell L; Nunes-Nesi A; Calijuri ML
    J Environ Manage; 2021 Dec; 299():113668. PubMed ID: 34492441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.