These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 37453525)

  • 21. Interactions of microalgae-bacteria consortia for nutrient removal from wastewater: A review.
    Fallahi A; Rezvani F; Asgharnejad H; Khorshidi Nazloo E; Hajinajaf N; Higgins B
    Chemosphere; 2021 Jun; 272():129878. PubMed ID: 35534965
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microalgae cultivation for treating agricultural effluent and producing value-added products.
    Alavianghavanini A; Shayesteh H; Bahri PA; Vadiveloo A; Moheimani NR
    Sci Total Environ; 2024 Feb; 912():169369. PubMed ID: 38104821
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microalgae-based livestock wastewater treatment (MbWT) as a circular bioeconomy approach: Enhancement of biomass productivity, pollutant removal and high-value compound production.
    López-Sánchez A; Silva-Gálvez AL; Aguilar-Juárez Ó; Senés-Guerrero C; Orozco-Nunnelly DA; Carrillo-Nieves D; Gradilla-Hernández MS
    J Environ Manage; 2022 Apr; 308():114612. PubMed ID: 35149401
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nutrient and pathogen removal from anaerobically treated black water by microalgae.
    Slompo NDM; Quartaroli L; Fernandes TV; Silva GHRD; Daniel LA
    J Environ Manage; 2020 Aug; 268():110693. PubMed ID: 32510435
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Polishing of municipal secondary effluent using native microalgae consortia.
    Beltrán-Rocha JC; Barceló-Quintal ID; García-Martínez M; Osornio-Berthet L; Saavedra-Villarreal N; Villarreal-Chiu J; López-Chuken UJ
    Water Sci Technol; 2017 Apr; 75(7-8):1693-1701. PubMed ID: 28402311
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Current practices and challenges in using microalgae for treatment of nutrient rich wastewater from agro-based industries.
    Gupta S; Pawar SB; Pandey RA
    Sci Total Environ; 2019 Oct; 687():1107-1126. PubMed ID: 31412448
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cultivating microalgae in wastewater for biomass production, pollutant removal, and atmospheric carbon mitigation; a review.
    Shahid A; Malik S; Zhu H; Xu J; Nawaz MZ; Nawaz S; Asraful Alam M; Mehmood MA
    Sci Total Environ; 2020 Feb; 704():135303. PubMed ID: 31818584
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanisms of copper and zinc bioremoval by microalgae and bacteria grown in nutrient rich wastewaters.
    Antolín B; Torres A; García PA; Bolado S; Vega M
    Chemosphere; 2024 May; 355():141803. PubMed ID: 38554867
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bioremediation of heavy metals from wastewater: a current perspective on microalgae-based future.
    Goswami RK; Agrawal K; Shah MP; Verma P
    Lett Appl Microbiol; 2022 Oct; 75(4):701-717. PubMed ID: 34562022
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimal influent N-to-P ratio for stable microalgal cultivation in water treatment and nutrient recovery.
    Wágner DS; Cazzaniga C; Steidl M; Dechesne A; Valverde-Pérez B; Plósz BG
    Chemosphere; 2021 Jan; 262():127939. PubMed ID: 33182115
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of the N/P ratio on biomass productivity and nutrient removal from municipal wastewater.
    Choi HJ; Lee SM
    Bioprocess Biosyst Eng; 2015 Apr; 38(4):761-6. PubMed ID: 25362890
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In situ biological CO
    Razzak SA
    Bioprocess Biosyst Eng; 2019 Jan; 42(1):93-105. PubMed ID: 30259109
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Indigenous microalgae biomass cultivation in continuous reactor with anaerobic effluent: effect of dilution rate on productivity, nutrient removal and bioindicators.
    Pereira MV; Dassoler AF; Antunes PW; Gonçalves RF; Cassini ST
    Environ Technol; 2020 Jun; 41(14):1780-1792. PubMed ID: 30427260
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Growth and heavy metals accumulation potential of microalgae grown in sewage wastewater and petrochemical effluents.
    Ajayan KV; Selvaraju M; Thirugnanamoorthy K
    Pak J Biol Sci; 2011 Aug; 14(16):805-11. PubMed ID: 22545355
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biomass production and nutrients removal by a new microalgae strain Desmodesmus sp. in anaerobic digestion wastewater.
    Ji F; Liu Y; Hao R; Li G; Zhou Y; Dong R
    Bioresour Technol; 2014 Jun; 161():200-7. PubMed ID: 24704885
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Aquaculture wastewater treatment through microalgal. Biomass potential applications on animal feed, agriculture, and energy.
    Viegas C; Gouveia L; Gonçalves M
    J Environ Manage; 2021 May; 286():112187. PubMed ID: 33609932
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Integrating Microalgae Cultivation with Wastewater Treatment: a Peek into Economics.
    Chaudry S
    Appl Biochem Biotechnol; 2021 Oct; 193(10):3395-3406. PubMed ID: 34196918
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantification of Heavy Metals and Other Inorganic Contaminants on the Productivity of Microalgae.
    Napan K; Hess D; McNeil B; Quinn JC
    J Vis Exp; 2015 Jul; (101):e52936. PubMed ID: 26274060
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of the microalgae-bacteria microbiome on wastewater treatment and biomass production.
    Paddock MB; Fernández-Bayo JD; VanderGheynst JS
    Appl Microbiol Biotechnol; 2020 Jan; 104(2):893-905. PubMed ID: 31828407
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nutrient removal in an algal membrane photobioreactor: effects of wastewater composition and light/dark cycle.
    Praveen P; Loh KC
    Appl Microbiol Biotechnol; 2019 Apr; 103(8):3571-3580. PubMed ID: 30809712
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.