These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 37453529)

  • 1. Interfacial Adsorption Controls Particle Formation in Antibody Formulations Subjected to Extensional Flows and Hydrodynamic Shear.
    Thite NG; Ghazvini S; Wallace N; Feldman N; Calderon CP; Randolph TW
    J Pharm Sci; 2023 Nov; 112(11):2766-2777. PubMed ID: 37453529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein Adsorption and Layer Formation at the Stainless Steel-Solution Interface Mediates Shear-Induced Particle Formation for an IgG1 Monoclonal Antibody.
    Kalonia CK; Heinrich F; Curtis JE; Raman S; Miller MA; Hudson SD
    Mol Pharm; 2018 Mar; 15(3):1319-1331. PubMed ID: 29425047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding the Impact of Combined Hydrodynamic Shear and Interfacial Dilatational Stress, on Interface-Mediated Particle Formation for Monoclonal Antibody Formulations.
    Griffin VP; Pace S; Ogunyankin MO; Holstein M; Hung J; Dhar P
    J Pharm Sci; 2024 Apr; ():. PubMed ID: 38615816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic Stress Device to Decouple the Synergistic Effect of Shear and Interfaces on Antibody Aggregation.
    Gerlt MS; Meier EM; Dingfelder F; Zürcher D; Müller M; Arosio P
    J Pharm Sci; 2024 May; ():. PubMed ID: 38801973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanistic Investigation on Grinding-Induced Subvisible Particle Formation during Mixing and Filling of Monoclonal Antibody Formulations.
    Gikanga B; Hui A; Maa YF
    PDA J Pharm Sci Technol; 2018; 72(2):117-133. PubMed ID: 29030532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Response of a concentrated monoclonal antibody formulation to high shear.
    Bee JS; Stevenson JL; Mehta B; Svitel J; Pollastrini J; Platz R; Freund E; Carpenter JF; Randolph TW
    Biotechnol Bioeng; 2009 Aug; 103(5):936-43. PubMed ID: 19370772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlating Surface Activity with Interface-Induced Aggregation in a High-Concentration mAb Solution.
    Escobar ELN; Griffin VP; Dhar P
    Mol Pharm; 2024 Mar; 21(3):1490-1500. PubMed ID: 38385557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating the Role of the Air-Solution Interface on the Mechanism of Subvisible Particle Formation Caused by Mechanical Agitation for an IgG1 mAb.
    Ghazvini S; Kalonia C; Volkin DB; Dhar P
    J Pharm Sci; 2016 May; 105(5):1643-1656. PubMed ID: 27025981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using Passive Microrheology to Measure the Evolution of the Rheological Properties of NIST mAb Formulations during Adsorption to the Air-Water Interface.
    Escobar ELN; Vaclaw MC; Lozenski JT; Dhar P
    Langmuir; 2024 Mar; 40(9):4789-4800. PubMed ID: 38379175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein aggregation and particle formation in prefilled glass syringes.
    Gerhardt A; Mcgraw NR; Schwartz DK; Bee JS; Carpenter JF; Randolph TW
    J Pharm Sci; 2014 Jun; 103(6):1601-12. PubMed ID: 24729310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linking aggregation and interfacial properties in monoclonal antibody-surfactant formulations.
    Kannan A; Shieh IC; Fuller GG
    J Colloid Interface Sci; 2019 Aug; 550():128-138. PubMed ID: 31055138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating the Combined Impact of Temperature and Application of Interfacial Dilatational Stresses on Surface-mediated Protein Particle Formation in Monoclonal Antibody Formulations.
    Griffin VP; Merritt K; Vaclaw C; Whitaker N; Volkin DB; Ogunyankin MO; Pace S; Dhar P
    J Pharm Sci; 2022 Mar; 111(3):680-689. PubMed ID: 34742729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Advances in Studying Interfacial Adsorption of Bioengineered Monoclonal Antibodies.
    Hollowell P; Li Z; Hu X; Ruane S; Kalonia C; van der Walle CF; Lu JR
    Molecules; 2020 Apr; 25(9):. PubMed ID: 32353995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interfacial dilatational deformation accelerates particle formation in monoclonal antibody solutions.
    Lin GL; Pathak JA; Kim DH; Carlson M; Riguero V; Kim YJ; Buff JS; Fuller GG
    Soft Matter; 2016 Apr; 12(14):3293-302. PubMed ID: 26891116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergistic effects of flow and interfaces on antibody aggregation.
    Grigolato F; Arosio P
    Biotechnol Bioeng; 2020 Feb; 117(2):417-428. PubMed ID: 31654415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine Learning Analysis Provides Insight into Mechanisms of Protein Particle Formation Inside Containers During Mechanical Agitation.
    Thite NG; Ghazvini S; Wallace N; Feldman N; Calderon CP; Randolph TW
    J Pharm Sci; 2022 Oct; 111(10):2730-2744. PubMed ID: 35835184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surfactant Impact on Interfacial Protein Aggregation and Utilization of Surface Tension to Predict Surfactant Requirements for Biological Formulations.
    Vargo KB; Stahl P; Hwang B; Hwang E; Giordano D; Randolph P; Celentano C; Hepler R; Amin K
    Mol Pharm; 2021 Jan; 18(1):148-157. PubMed ID: 33253579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pitting inhibition of stainless steel by surfactants: an electrochemical and surface chemical approach.
    Wei Z; Duby P; Somasundaran P
    J Colloid Interface Sci; 2003 Mar; 259(1):97-102. PubMed ID: 12651137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Both protein adsorption and aggregation contribute to shear yielding and viscosity increase in protein solutions.
    Castellanos MM; Pathak JA; Colby RH
    Soft Matter; 2014 Jan; 10(1):122-31. PubMed ID: 24651563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surfactant Effects on Particle Generation in Antibody Formulations in Pre-filled Syringes.
    Gerhardt A; Mcumber AC; Nguyen BH; Lewus R; Schwartz DK; Carpenter JF; Randolph TW
    J Pharm Sci; 2015 Dec; 104(12):4056-4064. PubMed ID: 26413998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.