BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 3745439)

  • 1. Murine cytotoxic activated macrophages inhibit aconitase in tumor cells. Inhibition involves the iron-sulfur prosthetic group and is reversible.
    Drapier JC; Hibbs JB
    J Clin Invest; 1986 Sep; 78(3):790-7. PubMed ID: 3745439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differentiation of murine macrophages to express nonspecific cytotoxicity for tumor cells results in L-arginine-dependent inhibition of mitochondrial iron-sulfur enzymes in the macrophage effector cells.
    Drapier JC; Hibbs JB
    J Immunol; 1988 Apr; 140(8):2829-38. PubMed ID: 2451695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monokine mediated release of intracellular iron in tumor target cells in vitro.
    Klostergaard J
    Lymphokine Res; 1987; 6(1):19-28. PubMed ID: 3546962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. L-arginine is required for expression of the activated macrophage effector mechanism causing selective metabolic inhibition in target cells.
    Hibbs JB; Vavrin Z; Taintor RR
    J Immunol; 1987 Jan; 138(2):550-65. PubMed ID: 2432129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frataxin acts as an iron chaperone protein to modulate mitochondrial aconitase activity.
    Bulteau AL; O'Neill HA; Kennedy MC; Ikeda-Saito M; Isaya G; Szweda LI
    Science; 2004 Jul; 305(5681):242-5. PubMed ID: 15247478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tumoricidal effector mechanisms of murine Bacillus Calmette-Guérin-activated macrophages: mediation of cytolysis, mitochondrial respiration inhibition, and release of intracellular iron by distinct mechanisms.
    Klostergaard J; Leroux ME; Ezell SM; Kull FC
    Cancer Res; 1987 Apr; 47(8):2014-9. PubMed ID: 3828989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic regulation of citrate and iron by aconitases: role of iron-sulfur cluster biogenesis.
    Tong WH; Rouault TA
    Biometals; 2007 Jun; 20(3-4):549-64. PubMed ID: 17205209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sites and mechanisms of aconitase inactivation by peroxynitrite: modulation by citrate and glutathione.
    Han D; Canali R; Garcia J; Aguilera R; Gallaher TK; Cadenas E
    Biochemistry; 2005 Sep; 44(36):11986-96. PubMed ID: 16142896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitric oxide and peroxynitrite-dependent aconitase inactivation and iron-regulatory protein-1 activation in mammalian fibroblasts.
    Castro LA; Robalinho RL; Cayota A; Meneghini R; Radi R
    Arch Biochem Biophys; 1998 Nov; 359(2):215-24. PubMed ID: 9808763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mössbauer and EPR studies of activated aconitase: development of a localized valence state at a subsite of the [4Fe-4S] cluster on binding of citrate.
    Emptage MH; Kent TA; Kennedy MC; Beinert H; Münck E
    Proc Natl Acad Sci U S A; 1983 Aug; 80(15):4674-8. PubMed ID: 6308639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interplay between NO and [Fe-S] clusters: relevance to biological systems.
    Drapier JC
    Methods; 1997 Mar; 11(3):319-29. PubMed ID: 9073575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial iron loss from leukemia cells injured by macrophages. A possible mechanism for electron transport chain defects.
    Wharton M; Granger DL; Durack DT
    J Immunol; 1988 Aug; 141(4):1311-7. PubMed ID: 3397540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for the formation of a linear [3Fe-4S] cluster in partially unfolded aconitase.
    Kennedy MC; Kent TA; Emptage M; Merkle H; Beinert H; Münck E
    J Biol Chem; 1984 Dec; 259(23):14463-71. PubMed ID: 6094558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox-dependent modulation of aconitase activity in intact mitochondria.
    Bulteau AL; Ikeda-Saito M; Szweda LI
    Biochemistry; 2003 Dec; 42(50):14846-55. PubMed ID: 14674759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro activation of apo-aconitase using a [4Fe-4S] cluster-loaded form of the IscU [Fe-S] cluster scaffolding protein.
    Unciuleac MC; Chandramouli K; Naik S; Mayer S; Huynh BH; Johnson MK; Dean DR
    Biochemistry; 2007 Jun; 46(23):6812-21. PubMed ID: 17506526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nickel decreases cellular iron level and converts cytosolic aconitase to iron-regulatory protein 1 in A549 cells.
    Chen H; Davidson T; Singleton S; Garrick MD; Costa M
    Toxicol Appl Pharmacol; 2005 Aug; 206(3):275-87. PubMed ID: 16039939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyperthermic modulation of respiratory inhibition factor- and iron releasing factor-dependent macrophage murine tumor cytotoxicity.
    Klostergaard J; Barta M; Tomasovic SP
    Cancer Res; 1989 Nov; 49(22):6252-7. PubMed ID: 2680061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mössbauer studies of aconitase. Substrate and inhibitor binding, reaction intermediates, and hyperfine interactions of reduced 3Fe and 4Fe clusters.
    Kent TA; Emptage MH; Merkle H; Kennedy MC; Beinert H; Münck E
    J Biol Chem; 1985 Jun; 260(11):6871-81. PubMed ID: 2987236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitric oxide and peroxynitrite activate the iron regulatory protein-1 of J774A.1 macrophages by direct disassembly of the Fe-S cluster of cytoplasmic aconitase.
    Cairo G; Ronchi R; Recalcati S; Campanella A; Minotti G
    Biochemistry; 2002 Jun; 41(23):7435-42. PubMed ID: 12044177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leishmania spp.: nitric oxide-mediated metabolic inhibition of promastigote and axenically grown amastigote forms.
    Lemesre JL; Sereno D; Daulouède S; Veyret B; Brajon N; Vincendeau P
    Exp Parasitol; 1997 May; 86(1):58-68. PubMed ID: 9149241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.