These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 37454514)

  • 1. Interpreting convolutional neural network classifiers applied to laser-induced breakdown optical emission spectra.
    Képeš E; Vrábel J; Brázdil T; Holub P; Pořízka P; Kaiser J
    Talanta; 2024 Jan; 266(Pt 1):124946. PubMed ID: 37454514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Planetary geochemical investigations using Raman and laser-induced breakdown spectroscopy.
    Clegg SM; Wiens R; Misra AK; Sharma SK; Lambert J; Bender S; Newell R; Nowak-Lovato K; Smrekar S; Dyar MD; Maurice S
    Appl Spectrosc; 2014; 68(9):925-36. PubMed ID: 25226246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of Convolutional and Conventional Artificial Neural Networks for Laser-Induced Breakdown Spectroscopy Quantitative Analysis.
    Poggialini F; Campanella B; Legnaioli S; Raneri S; Palleschi V
    Appl Spectrosc; 2022 Aug; 76(8):959-966. PubMed ID: 35291826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Convolution Neural Network with Laser-Induced Breakdown Spectroscopy as a Monitoring Tool for Laser Cleaning Process.
    Choi S; Park C
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of two partial least squares-discriminant analysis algorithms for identifying geological samples with the ChemCam laser-induced breakdown spectroscopy instrument.
    Ollila AM; Lasue J; Newsom HE; Multari RA; Wiens RC; Clegg SM
    Appl Opt; 2012 Mar; 51(7):B130-42. PubMed ID: 22410911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interpretable deep learning-assisted laser-induced breakdown spectroscopy for brand classification of iron ores.
    Zhao W; Li C; Yan C; Min H; An Y; Liu S
    Anal Chim Acta; 2021 Jun; 1166():338574. PubMed ID: 34022994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of machine learning classification models for tumor cells based on cell elements heterogeneity with laser-induced breakdown spectroscopy.
    Wang Y; Huang D; Shu K; Xu Y; Duan Y; Fan Q; Lin Q; Tuchin VV
    J Biophotonics; 2023 Nov; 16(11):e202300239. PubMed ID: 37515457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From machine learning to transfer learning in laser-induced breakdown spectroscopy analysis of rocks for Mars exploration.
    Sun C; Xu W; Tan Y; Zhang Y; Yue Z; Zou L; Shabbir S; Wu M; Chen F; Yu J
    Sci Rep; 2021 Nov; 11(1):21379. PubMed ID: 34725375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adversarial Data Augmentation and Transfer Net for Scrap Metal Identification Using Laser-Induced Breakdown Spectroscopy Measurement of Standard Reference Materials.
    Srivastava E; Kim H; Lee J; Shin S; Jeong S; Hwang E
    Appl Spectrosc; 2023 Jun; 77(6):603-615. PubMed ID: 37097821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The SuperCam Instrument Suite on the NASA Mars 2020 Rover: Body Unit and Combined System Tests.
    Wiens RC; Maurice S; Robinson SH; Nelson AE; Cais P; Bernardi P; Newell RT; Clegg S; Sharma SK; Storms S; Deming J; Beckman D; Ollila AM; Gasnault O; Anderson RB; André Y; Michael Angel S; Arana G; Auden E; Beck P; Becker J; Benzerara K; Bernard S; Beyssac O; Borges L; Bousquet B; Boyd K; Caffrey M; Carlson J; Castro K; Celis J; Chide B; Clark K; Cloutis E; Cordoba EC; Cousin A; Dale M; Deflores L; Delapp D; Deleuze M; Dirmyer M; Donny C; Dromart G; George Duran M; Egan M; Ervin J; Fabre C; Fau A; Fischer W; Forni O; Fouchet T; Fresquez R; Frydenvang J; Gasway D; Gontijo I; Grotzinger J; Jacob X; Jacquinod S; Johnson JR; Klisiewicz RA; Lake J; Lanza N; Laserna J; Lasue J; Le Mouélic S; Legett C; Leveille R; Lewin E; Lopez-Reyes G; Lorenz R; Lorigny E; Love SP; Lucero B; Madariaga JM; Madsen M; Madsen S; Mangold N; Manrique JA; Martinez JP; Martinez-Frias J; McCabe KP; McConnochie TH; McGlown JM; McLennan SM; Melikechi N; Meslin PY; Michel JM; Mimoun D; Misra A; Montagnac G; Montmessin F; Mousset V; Murdoch N; Newsom H; Ott LA; Ousnamer ZR; Pares L; Parot Y; Pawluczyk R; Glen Peterson C; Pilleri P; Pinet P; Pont G; Poulet F; Provost C; Quertier B; Quinn H; Rapin W; Reess JM; Regan AH; Reyes-Newell AL; Romano PJ; Royer C; Rull F; Sandoval B; Sarrao JH; Sautter V; Schoppers MJ; Schröder S; Seitz D; Shepherd T; Sobron P; Dubois B; Sridhar V; Toplis MJ; Torre-Fdez I; Trettel IA; Underwood M; Valdez A; Valdez J; Venhaus D; Willis P
    Space Sci Rev; 2021; 217(1):4. PubMed ID: 33380752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Jewelry rock discrimination as interpretable data using laser-induced breakdown spectroscopy and a convolutional LSTM deep learning algorithm.
    Khalilian P; Rezaei F; Darkhal N; Karimi P; Safi A; Palleschi V; Melikechi N; Tavassoli SH
    Sci Rep; 2024 Mar; 14(1):5169. PubMed ID: 38431680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep learning for liver tumor diagnosis part II: convolutional neural network interpretation using radiologic imaging features.
    Wang CJ; Hamm CA; Savic LJ; Ferrante M; Schobert I; Schlachter T; Lin M; Weinreb JC; Duncan JS; Chapiro J; Letzen B
    Eur Radiol; 2019 Jul; 29(7):3348-3357. PubMed ID: 31093705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining prior knowledge with input selection algorithms for quantitative analysis using neural networks in laser induced breakdown spectroscopy.
    Luarte D; Myakalwar AK; Velásquez M; Álvarez J; Sandoval C; Fuentes R; Yañez J; Sbarbaro D
    Anal Methods; 2021 Mar; 13(9):1181-1190. PubMed ID: 33600544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Next generation laser-based standoff spectroscopy techniques for Mars exploration.
    Gasda PJ; Acosta-Maeda TE; Lucey PG; Misra AK; Sharma SK; Taylor GJ
    Appl Spectrosc; 2015; 69(2):173-92. PubMed ID: 25587811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interpreting convolutional neural network for real-time volatile organic compounds detection and classification using optical emission spectroscopy of plasma.
    Wang CY; Ko TS; Hsu CC
    Anal Chim Acta; 2021 Sep; 1179():338822. PubMed ID: 34535253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential convolutional neural network.
    Sarıgül M; Ozyildirim BM; Avci M
    Neural Netw; 2019 Aug; 116():279-287. PubMed ID: 31125914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Examining natural rock varnish and weathering rinds with laser-induced breakdown spectroscopy for application to ChemCam on Mars.
    Lanza NL; Clegg SM; Wiens RC; McInroy RE; Newsom HE; Deans MD
    Appl Opt; 2012 Mar; 51(7):B74-82. PubMed ID: 22410929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of Scikit and Keras Libraries for the Classification of Iron Ore Data Acquired by Laser-Induced Breakdown Spectroscopy (LIBS).
    Hao YYX; Zhang L; Ren L
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32143315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface hardness determination of laser cladding using laser-induced breakdown spectroscopy and machine learning (PLSR, CNN, ResNet, and DRSN).
    Yang J; Kong L; Ye H
    Appl Opt; 2024 Apr; 63(10):2509-2517. PubMed ID: 38568530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine learning for recognizing minerals from multispectral data.
    Jahoda P; Drozdovskiy I; Payler SJ; Turchi L; Bessone L; Sauro F
    Analyst; 2021 Jan; 146(1):184-195. PubMed ID: 33135038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.