These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 37454799)
1. Seagrass Thalassia hemprichii and associated bacteria co-response to the synergistic stress of ocean warming and ocean acidification. Zhang J; Yang Q; Yue W; Yang B; Zhou W; Chen L; Huang X; Zhang W; Dong J; Ling J Environ Res; 2023 Nov; 236(Pt 1):116658. PubMed ID: 37454799 [TBL] [Abstract][Full Text] [Related]
2. The distribution characteristics of β-propeller phytase genes in rhizosphere sediment provide insight into species specialty from phytic mineralization in subtropical and tropical seagrass ecosystems. Lin L; Ling J; Peng Q; Lin X; Zhou W; Zhang Y; Yang Q; Ahamad M; Zhang Y; Wang C; Wang Y; Dong J Ecotoxicology; 2021 Nov; 30(9):1781-1788. PubMed ID: 34115256 [TBL] [Abstract][Full Text] [Related]
3. Combining mesocosms with models reveals effects of global warming and ocean acidification on a temperate marine ecosystem. Ullah H; Fordham DA; Goldenberg SU; Nagelkerken I Ecol Appl; 2024 Jun; 34(4):e2977. PubMed ID: 38706047 [TBL] [Abstract][Full Text] [Related]
4. Influence of the seagrass Thalassia hemprichii on coral reef mesocosms exposed to ocean acidification and experimentally elevated temperatures. Liu PJ; Ang SJ; Mayfield AB; Lin HJ Sci Total Environ; 2020 Jan; 700():134464. PubMed ID: 31689648 [TBL] [Abstract][Full Text] [Related]
5. Acidification alleviates the inhibition of hyposaline stress on physiological performance of tropical seagrass Thalassia hemprichii. Shi Z; Zhao M; Wang K; Ma S; Luo H; Han Q; Shi Y Mar Pollut Bull; 2024 Aug; 205():116642. PubMed ID: 38941803 [TBL] [Abstract][Full Text] [Related]
6. Expected limits on the ocean acidification buffering potential of a temperate seagrass meadow. Koweek DA; Zimmerman RC; Hewett KM; Gaylord B; Giddings SN; Nickols KJ; Ruesink JL; Stachowicz JJ; Takeshita Y; Caldeira K Ecol Appl; 2018 Oct; 28(7):1694-1714. PubMed ID: 30063809 [TBL] [Abstract][Full Text] [Related]
7. Ocean warming and acidification modify top-down and bottom-up control in a tropical seagrass ecosystem. Listiawati V; Kurihara H Sci Rep; 2021 Jun; 11(1):13605. PubMed ID: 34193925 [TBL] [Abstract][Full Text] [Related]
8. Behavioral and physiological effects of ocean acidification and warming on larvae of a continental shelf bivalve. Czaja R; Holmberg R; Pales Espinosa E; Hennen D; Cerrato R; Lwiza K; O'Dwyer J; Beal B; Root K; Zuklie H; Allam B Mar Pollut Bull; 2023 Jul; 192():115048. PubMed ID: 37236091 [TBL] [Abstract][Full Text] [Related]
9. Hidden cost of pH variability in seagrass beds on marine calcifiers under ocean acidification. Cossa D; Infantes E; Dupont S Sci Total Environ; 2024 Mar; 915():170169. PubMed ID: 38244616 [TBL] [Abstract][Full Text] [Related]
10. Ocean acidification impairs seagrass performance under thermal stress in shallow and deep water. Ravaglioli C; De Marchi L; Anselmi S; Dattolo E; Fontanini D; Pretti C; Procaccini G; Rilov G; Renzi M; Silverman J; Bulleri F Environ Res; 2024 Jan; 241():117629. PubMed ID: 37967703 [TBL] [Abstract][Full Text] [Related]
11. Responses of marine trophic levels to the combined effects of ocean acidification and warming. Hu N; Bourdeau PE; Hollander J Nat Commun; 2024 Apr; 15(1):3400. PubMed ID: 38649374 [TBL] [Abstract][Full Text] [Related]
12. Impact of ocean acidification and warming on the productivity of a rock pool community. Legrand E; Riera P; Bohner O; Coudret J; Schlicklin F; Derrien M; Martin S Mar Environ Res; 2018 May; 136():78-88. PubMed ID: 29472033 [TBL] [Abstract][Full Text] [Related]
13. Ocean warming and acidification affect the nutritional quality of the commercially-harvested turbinid snail Turbo militaris. Ab Lah R; Kelaher BP; Bucher D; Benkendorff K Mar Environ Res; 2018 Oct; 141():100-108. PubMed ID: 30119918 [TBL] [Abstract][Full Text] [Related]
14. Ecological-economic sustainability of the Baltic cod fisheries under ocean warming and acidification. Voss R; Quaas MF; Stiasny MH; Hänsel M; Stecher Justiniano Pinto GA; Lehmann A; Reusch TBH; Schmidt JO J Environ Manage; 2019 May; 238():110-118. PubMed ID: 30849595 [TBL] [Abstract][Full Text] [Related]
15. Consumers mediate the effects of experimental ocean acidification and warming on primary producers. Alsterberg C; Eklöf JS; Gamfeldt L; Havenhand JN; Sundbäck K Proc Natl Acad Sci U S A; 2013 May; 110(21):8603-8. PubMed ID: 23630263 [TBL] [Abstract][Full Text] [Related]
16. Meta-analysis reveals variance in tolerance to climate change across marine trophic levels. Hu N; Bourdeau PE; Harlos C; Liu Y; Hollander J Sci Total Environ; 2022 Jun; 827():154244. PubMed ID: 35245550 [TBL] [Abstract][Full Text] [Related]
17. Who wins or loses matters: Strongly interacting consumers drive seagrass resistance under ocean acidification. Lee J; Hughes BB; Kroeker KJ; Owens A; Wong C; Micheli F Sci Total Environ; 2022 Feb; 808():151594. PubMed ID: 34826463 [TBL] [Abstract][Full Text] [Related]
18. Do global environmental drivers' ocean acidification and warming exacerbate the effects of oil pollution on the physiological energetics of Scylla serrata? Baag S; Mandal S Environ Sci Pollut Res Int; 2023 Feb; 30(9):23213-23224. PubMed ID: 36318414 [TBL] [Abstract][Full Text] [Related]
19. Climate change mitigation by coral reefs and seagrass beds at risk: How global change compromises coastal ecosystem services. James RK; Keyzer LM; van de Velde SJ; Herman PMJ; van Katwijk MM; Bouma TJ Sci Total Environ; 2023 Jan; 857(Pt 3):159576. PubMed ID: 36273559 [TBL] [Abstract][Full Text] [Related]
20. Biochar Addition Altered Bacterial Community and Improved Photosynthetic Rate of Seagrass: A Mesocosm Study of Seagrass Zhang J; Ling J; Zhou W; Zhang W; Yang F; Wei Z; Yang Q; Zhang Y; Dong J Front Microbiol; 2021; 12():783334. PubMed ID: 34925287 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]