These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 37454802)
1. Dispersion of sneeze droplets in a meat facility indoor environment - Without partitions. Kumar S; Klassen M; Klassen D; Hardin R; King MD Environ Res; 2023 Nov; 236(Pt 1):116603. PubMed ID: 37454802 [TBL] [Abstract][Full Text] [Related]
2. Effect of indoor temperature on the velocity fields and airborne transmission of sneeze droplets: An experimental study and transient CFD modeling. Bahramian A; Mohammadi M; Ahmadi G Sci Total Environ; 2023 Feb; 858(Pt 2):159444. PubMed ID: 36252673 [TBL] [Abstract][Full Text] [Related]
3. Numerical investigation on indoor environment decontamination after sneezing. Kumar S; King MD Environ Res; 2022 Oct; 213():113665. PubMed ID: 35714690 [TBL] [Abstract][Full Text] [Related]
4. Influence of indoor environmental conditions on airborne transmission and lifetime of sneeze droplets in a confined space: a way to reduce COVID-19 spread. Bahramian A Environ Sci Pollut Res Int; 2023 Mar; 30(15):44067-44085. PubMed ID: 36680724 [TBL] [Abstract][Full Text] [Related]
5. The role of air conditioning in the diffusion of Sars-CoV-2 in indoor environments: A first computational fluid dynamic model, based on investigations performed at the Vatican State Children's hospital. Borro L; Mazzei L; Raponi M; Piscitelli P; Miani A; Secinaro A Environ Res; 2021 Feb; 193():110343. PubMed ID: 33068577 [TBL] [Abstract][Full Text] [Related]
6. Sneezing and asymptomatic virus transmission. Busco G; Yang SR; Seo J; Hassan YA Phys Fluids (1994); 2020 Jul; 32(7):073309. PubMed ID: 32684746 [TBL] [Abstract][Full Text] [Related]
7. Large eddy simulation of sneeze plumes and particles in a poorly ventilated outdoor air condition: A case study of the University of Houston main campus. Zanganeh Kia H; Choi Y; Nelson D; Park J; Pouyaei A Sci Total Environ; 2023 Sep; 891():164694. PubMed ID: 37290661 [TBL] [Abstract][Full Text] [Related]
8. Infection risk in cable cars and other enclosed spaces. Lunati I; Mucignat C Indoor Air; 2022 Aug; 32(8):e13094. PubMed ID: 36040286 [TBL] [Abstract][Full Text] [Related]
10. Quantitative Microbial Risk Assessment for Airborne Transmission of SARS-CoV-2 via Breathing, Speaking, Singing, Coughing, and Sneezing. Schijven J; Vermeulen LC; Swart A; Meijer A; Duizer E; de Roda Husman AM Environ Health Perspect; 2021 Apr; 129(4):47002. PubMed ID: 33793301 [TBL] [Abstract][Full Text] [Related]
11. Airborne spread of infectious agents in the indoor environment. Wei J; Li Y Am J Infect Control; 2016 Sep; 44(9 Suppl):S102-8. PubMed ID: 27590694 [TBL] [Abstract][Full Text] [Related]
12. Novel measurement system for respiratory aerosols and droplets in indoor environments. Lommel M; Froese V; Sieber M; Jentzsch M; Bierewirtz T; Hasirci Ü; Rese T; Seefeldt J; Schimek S; Kertzscher U; Paschereit CO Indoor Air; 2021 Nov; 31(6):1860-1873. PubMed ID: 34096643 [TBL] [Abstract][Full Text] [Related]
13. The effect of natural ventilation on airborne transmission of the COVID-19 virus spread by sneezing in the classroom. Firatoglu ZA Sci Total Environ; 2023 Oct; 896():165113. PubMed ID: 37391140 [TBL] [Abstract][Full Text] [Related]
14. Monitoring COVID-19 Transmission Risks by Quantitative Real-Time PCR Tracing of Droplets in Hospital and Living Environments. Piana A; Colucci ME; Valeriani F; Marcolongo A; Sotgiu G; Pasquarella C; Margarucci LM; Petrucca A; Gianfranceschi G; Babudieri S; Vitali P; D'Ermo G; Bizzarro A; De Maio F; Vitali M; Azara A; Romano F; Simmaco M; Romano Spica V mSphere; 2021 Jan; 6(1):. PubMed ID: 33408231 [TBL] [Abstract][Full Text] [Related]
15. 3D modelling and simulation of the dispersion of droplets and drops carrying the SARS-CoV-2 virus in a railway transport coach. Armand P; Tâche J Sci Rep; 2022 Mar; 12(1):4025. PubMed ID: 35256741 [TBL] [Abstract][Full Text] [Related]
16. Effects of recirculation and air change per hour on COVID-19 transmission in indoor settings: A CFD study with varying HVAC parameters. Islam MT; Chen Y; Seong D; Verhougstraete M; Son YJ Heliyon; 2024 Aug; 10(15):e35092. PubMed ID: 39170199 [TBL] [Abstract][Full Text] [Related]
17. Numerical modeling of sneeze airflow and its validation with an experimental dataset. Oh W; Ooka R; Kikumoto H; Han M Indoor Air; 2022 Nov; 32(11):e13171. PubMed ID: 36437664 [TBL] [Abstract][Full Text] [Related]
18. Coupling Computational Fluid Dynamics Simulations and Statistical Moments for Designing Healthy Indoor Spaces. Hoque S; Omar FB Int J Environ Res Public Health; 2019 Mar; 16(5):. PubMed ID: 30841556 [TBL] [Abstract][Full Text] [Related]
19. Multi-person movement-induced airflow and the effects on virus-laden expiratory droplet dispersion in indoor environments. Wu J; Geng J; Fu M; Weng W Indoor Air; 2022 Sep; 32(9):e13119. PubMed ID: 36168216 [TBL] [Abstract][Full Text] [Related]
20. Transport characteristics of expiratory droplets and droplet nuclei in indoor environments with different ventilation airflow patterns. Wan MP; Chao CY J Biomech Eng; 2007 Jun; 129(3):341-53. PubMed ID: 17536901 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]