These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 37455264)

  • 1. Engineering a Formate Dehydrogenase for NADPH Regeneration.
    Ma W; Geng Q; Chen C; Zheng YC; Yu HL; Xu JH
    Chembiochem; 2023 Oct; 24(20):e202300390. PubMed ID: 37455264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rational Engineering of Formate Dehydrogenase Substrate/Cofactor Affinity for Better Performance in NADPH Regeneration.
    Jiang HW; Chen Q; Pan J; Zheng GW; Xu JH
    Appl Biochem Biotechnol; 2020 Oct; 192(2):530-543. PubMed ID: 32405732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-Guided Design of Formate Dehydrogenase for Regeneration of a Non-Natural Redox Cofactor.
    Guo X; Wang X; Liu Y; Li Q; Wang J; Liu W; Zhao ZK
    Chemistry; 2020 Dec; 26(70):16611-16615. PubMed ID: 32815230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic engineering of Escherichia coli: increase of NADH availability by overexpressing an NAD(+)-dependent formate dehydrogenase.
    Berríos-Rivera SJ; Bennett GN; San KY
    Metab Eng; 2002 Jul; 4(3):217-29. PubMed ID: 12616691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural basis for double cofactor specificity in a new formate dehydrogenase from the acidobacterium Granulicella mallensis MP5ACTX8.
    Fogal S; Beneventi E; Cendron L; Bergantino E
    Appl Microbiol Biotechnol; 2015 Nov; 99(22):9541-54. PubMed ID: 26104866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochemical and structural insight into the chemical resistance and cofactor specificity of the formate dehydrogenase from Starkeya novella.
    Partipilo M; Whittaker JJ; Pontillo N; Coenradij J; Herrmann A; Guskov A; Slotboom DJ
    FEBS J; 2023 Sep; 290(17):4238-4255. PubMed ID: 37213112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Switching the Cofactor Preference of Formate Dehydrogenase to Develop an NADPH-Dependent Biocatalytic System for Synthesizing Chiral Amino Acids.
    Cheng F; Wei L; Wang CJ; Liang XH; Xu YQ; Xue YP; Zheng YG
    J Agric Food Chem; 2023 Jun; 71(23):9009-9019. PubMed ID: 37265255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Creating NADP
    Hu L; Liu L; Zhan C; Liu X; Liu C; Li Y; Bai Z; Yang Y
    Chembiochem; 2023 Dec; 24(24):e202300587. PubMed ID: 37783667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering of formate dehydrogenase: synergistic effect of mutations affecting cofactor specificity and chemical stability.
    Hoelsch K; Sührer I; Heusel M; Weuster-Botz D
    Appl Microbiol Biotechnol; 2013 Mar; 97(6):2473-81. PubMed ID: 22588502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Host cell and expression engineering for development of an E. coli ketoreductase catalyst: enhancement of formate dehydrogenase activity for regeneration of NADH.
    Mädje K; Schmölzer K; Nidetzky B; Kratzer R
    Microb Cell Fact; 2012 Jan; 11():7. PubMed ID: 22236335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering Isopropanol Dehydrogenase for Efficient Regeneration of Nicotinamide Cofactors.
    Jia Q; Zheng YC; Li HP; Qian XL; Zhang ZJ; Xu JH
    Appl Environ Microbiol; 2022 May; 88(9):e0034122. PubMed ID: 35442081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of increasing NADH availability on the redistribution of metabolic fluxes in Escherichia coli chemostat cultures.
    Berríos-Rivera SJ; Bennett GN; San KY
    Metab Eng; 2002 Jul; 4(3):230-7. PubMed ID: 12616692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Formate dehydrogenase and its application in biomanufacturing of chiral chemicals].
    Cheng F; Wei L; Wang C; Xue Y; Zheng Y
    Sheng Wu Gong Cheng Xue Bao; 2022 Feb; 38(2):632-649. PubMed ID: 35234387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of catalysis, substrate, and coenzyme binding sites and improvement catalytic efficiency of formate dehydrogenase from Candida boidinii.
    Jiang W; Lin P; Yang R; Fang B
    Appl Microbiol Biotechnol; 2016 Oct; 100(19):8425-37. PubMed ID: 27198726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering Candida boidinii formate dehydrogenase for activity with the non-canonical cofactor 3'-NADP(H).
    Vainstein S; Banta S
    Protein Eng Des Sel; 2023 Jan; 36():. PubMed ID: 37658768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changing the Electron Acceptor Specificity of
    Kumar H; Leimkühler S
    Int J Mol Sci; 2023 Nov; 24(22):. PubMed ID: 38003259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of different levels of NADH availability on metabolic fluxes of Escherichia coli chemostat cultures in defined medium.
    Sánchez AM; Bennett GN; San KY
    J Biotechnol; 2005 Jun; 117(4):395-405. PubMed ID: 15925720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering Redox Cofactor Balance for Improved 5-Methyltetrahydrofolate Production in
    Yang J; Wu Y; Lv X; Liu L; Li J; Du G; Liu Y
    J Agric Food Chem; 2024 May; 72(17):9974-9983. PubMed ID: 38625685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural insights into the NAD
    Yilmazer B; Isupov MN; De Rose SA; Bulut H; Benninghoff JC; Binay B; Littlechild JA
    J Struct Biol; 2020 Dec; 212(3):107657. PubMed ID: 33148525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein engineering of formate dehydrogenase.
    Tishkov VI; Popov VO
    Biomol Eng; 2006 Jun; 23(2-3):89-110. PubMed ID: 16546445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.