BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 37455389)

  • 1. Inertial Separation of Particles Assisted by Symmetrical Sheath Flows in a Straight Microchannel.
    Zhang T; Inglis DW; Ngo L; Wang Y; Hosokawa Y; Yalikun Y; Li M
    Anal Chem; 2023 Jul; 95(29):11132-11140. PubMed ID: 37455389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Particle/cell separation using sheath-free deterministic lateral displacement arrays with inertially focused single straight input.
    Tottori N; Nisisako T
    Lab Chip; 2020 Jun; 20(11):1999-2008. PubMed ID: 32373868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High throughput single-cell and multiple-cell micro-encapsulation.
    Lagus TP; Edd JF
    J Vis Exp; 2012 Jun; (64):e4096. PubMed ID: 22733254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous separation of microparticles in a microfluidic channel via the elasto-inertial effect of non-Newtonian fluid.
    Nam J; Lim H; Kim D; Jung H; Shin S
    Lab Chip; 2012 Apr; 12(7):1347-54. PubMed ID: 22334376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inertial microfluidics in contraction-expansion microchannels: A review.
    Jiang D; Ni C; Tang W; Huang D; Xiang N
    Biomicrofluidics; 2021 Jul; 15(4):041501. PubMed ID: 34262632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inertial Migration of Neutrally Buoyant Spherical Particles in Square Channels at Moderate and High Reynolds Numbers.
    Gao Y; Magaud P; Baldas L; Wang Y
    Micromachines (Basel); 2021 Feb; 12(2):. PubMed ID: 33672972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous size-based separation of microparticles in a microchannel with symmetric sharp corner structures.
    Fan LL; He XK; Han Y; Du L; Zhao L; Zhe J
    Biomicrofluidics; 2014 Mar; 8(2):024108. PubMed ID: 24738015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inertial particle separation by differential equilibrium positions in a symmetrical serpentine micro-channel.
    Zhang J; Yan S; Sluyter R; Li W; Alici G; Nguyen NT
    Sci Rep; 2014 Mar; 4():4527. PubMed ID: 24681628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of Lagrangian Modeling of Particle Motion in a Spiral Microchannel for Inertial Microfluidics.
    Rasooli R; Çetin B
    Micromachines (Basel); 2018 Aug; 9(9):. PubMed ID: 30424366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fundamentals and applications of inertial microfluidics: a review.
    Zhang J; Yan S; Yuan D; Alici G; Nguyen NT; Ebrahimi Warkiani M; Li W
    Lab Chip; 2016 Jan; 16(1):10-34. PubMed ID: 26584257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PDMS-Parylene Hybrid, Flexible Microfluidics for Real-Time Modulation of 3D Helical Inertial Microfluidics.
    Jung BJ; Kim J; Kim JA; Jang H; Seo S; Lee W
    Micromachines (Basel); 2018 May; 9(6):. PubMed ID: 30424188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inertia-Acoustophoresis Hybrid Microfluidic Device for Rapid and Efficient Cell Separation.
    Kim U; Oh B; Ahn J; Lee S; Cho Y
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sheathless elasto-inertial particle focusing and continuous separation in a straight rectangular microchannel.
    Yang S; Kim JY; Lee SJ; Lee SS; Kim JM
    Lab Chip; 2011 Jan; 11(2):266-73. PubMed ID: 20976348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic Separation and Enrichment of
    Zhang T; Cain AK; Semenec L; Liu L; Hosokawa Y; Inglis DW; Yalikun Y; Li M
    Anal Chem; 2023 Jan; 95(4):2561-2569. PubMed ID: 36656064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stretchable Inertial Microfluidic Device for Tunable Particle Separation.
    Fallahi H; Zhang J; Nicholls J; Phan HP; Nguyen NT
    Anal Chem; 2020 Sep; 92(18):12473-12480. PubMed ID: 32786464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous focusing of microparticles using inertial lift force and vorticity via multi-orifice microfluidic channels.
    Park JS; Song SH; Jung HI
    Lab Chip; 2009 Apr; 9(7):939-48. PubMed ID: 19294305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous particle separation in spiral microchannels using Dean flows and differential migration.
    Bhagat AA; Kuntaegowdanahalli SS; Papautsky I
    Lab Chip; 2008 Nov; 8(11):1906-14. PubMed ID: 18941692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced Separation Efficiency and Purity of Circulating Tumor Cells Based on the Combined Effects of Double Sheath Fluids and Inertial Focusing.
    Li BW; Wei K; Liu QQ; Sun XG; Su N; Li WM; Shang MY; Li JM; Liao D; Li J; Lu WP; Deng SL; Huang Q
    Front Bioeng Biotechnol; 2021; 9():750444. PubMed ID: 34778227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sheath-assisted versus sheathless dielectrophoretic particle separation.
    Dalili A; Hoorfar M
    Electrophoresis; 2021 Aug; 42(16):1570-1577. PubMed ID: 34196426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pattern Transition on Inertial Focusing of Neutrally Buoyant Particles Suspended in Rectangular Duct Flows.
    Yamashita H; Akinaga T; Sugihara-Seki M
    Micromachines (Basel); 2021 Oct; 12(10):. PubMed ID: 34683293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.