BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 37455424)

  • 1. Group sequential multi-arm multi-stage survival trial design with treatment selection.
    Wu J; Li Y
    J Biopharm Stat; 2024 Jul; 34(4):453-468. PubMed ID: 37455424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Group sequential multi-arm multi-stage trial design with treatment selection.
    Wu J; Li Y; Zhu L
    Stat Med; 2023 May; 42(10):1480-1491. PubMed ID: 36808736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-arm multi-stage (MAMS) randomised selection designs: impact of treatment selection rules on the operating characteristics.
    Choodari-Oskooei B; Blenkinsop A; Handley K; Pinkney T; Parmar MKB
    BMC Med Res Methodol; 2024 Jun; 24(1):124. PubMed ID: 38831421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Type I error rates of multi-arm multi-stage clinical trials: strong control and impact of intermediate outcomes.
    Bratton DJ; Parmar MK; Phillips PP; Choodari-Oskooei B
    Trials; 2016 Jul; 17(1):309. PubMed ID: 27369182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Designs for clinical trials with time-to-event outcomes based on stopping guidelines for lack of benefit.
    Royston P; Barthel FM; Parmar MK; Choodari-Oskooei B; Isham V
    Trials; 2011 Mar; 12():81. PubMed ID: 21418571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and monitoring of multi-arm multi-stage clinical trials.
    Ghosh P; Liu L; Senchaudhuri P; Gao P; Mehta C
    Biometrics; 2017 Dec; 73(4):1289-1299. PubMed ID: 28346823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation optimization for Bayesian multi-arm multi-stage clinical trial with binary endpoints.
    Yu Z; Ramakrishnan V; Meinzer C
    J Biopharm Stat; 2019; 29(2):306-317. PubMed ID: 30763151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An optimised multi-arm multi-stage clinical trial design for unknown variance.
    Grayling MJ; Wason JMS; Mander AP
    Contemp Clin Trials; 2018 Apr; 67():116-120. PubMed ID: 29474933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Designing multi-arm multi-stage clinical trials using a risk-benefit criterion for treatment selection.
    Jaki T; Hampson LV
    Stat Med; 2016 Feb; 35(4):522-33. PubMed ID: 26456537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing the impact of efficacy stopping rules on the error rates under the multi-arm multi-stage framework.
    Blenkinsop A; Parmar MK; Choodari-Oskooei B
    Clin Trials; 2019 Apr; 16(2):132-141. PubMed ID: 30648428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of multi-arm multi-stage design and adaptive randomization in platform clinical trials.
    Lin J; Bunn V
    Contemp Clin Trials; 2017 Mar; 54():48-59. PubMed ID: 28089763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal futility stopping boundaries for binary endpoints.
    Freitag MM; Li X; Rauch G
    BMC Med Res Methodol; 2024 Mar; 24(1):80. PubMed ID: 38539108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of lack-of-benefit stopping rules on treatment effect estimates of two-arm multi-stage (TAMS) trials with time to event outcome.
    Choodari-Oskooei B; Parmar MK; Royston P; Bowden J
    Trials; 2013 Jan; 14():23. PubMed ID: 23343147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexible stopping boundaries when changing primary endpoints after unblinded interim analyses.
    Chen LM; Ibrahim JG; Chu H
    J Biopharm Stat; 2014; 24(4):817-33. PubMed ID: 24697500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive Designs with Discrete Test Statistics and Consideration of Overrunning.
    Schmidt R; Burkhardt B; Faldum A
    Methods Inf Med; 2015; 54(5):434-46. PubMed ID: 26429500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimal design of multi-arm multi-stage trials.
    Wason JM; Jaki T
    Stat Med; 2012 Dec; 31(30):4269-79. PubMed ID: 22826199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-stage optimal designs based on exact variance for a single-arm trial with survival endpoints.
    Shan G
    J Biopharm Stat; 2020 Sep; 30(5):797-805. PubMed ID: 32129130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of Bayesian adaptive randomization and multi-stage designs for multi-arm clinical trials.
    Wason JM; Trippa L
    Stat Med; 2014 Jun; 33(13):2206-21. PubMed ID: 24421053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sample size reestimation and Bayesian predictive probability for single-arm clinical trials with a time-to-event endpoint using Weibull distribution with unknown shape parameter.
    Waleed M; He J; Phadnis MA
    J Biopharm Stat; 2024 Jul; 34(4):469-487. PubMed ID: 37545144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Choice of futility boundaries for group sequential designs with two endpoints.
    Schüler S; Kieser M; Rauch G
    BMC Med Res Methodol; 2017 Aug; 17(1):119. PubMed ID: 28789615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.