These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 37455836)

  • 1. Communicative capital: a key resource for human-machine shared agency and collaborative capacity.
    Mathewson KW; Parker ASR; Sherstan C; Edwards AL; Sutton RS; Pilarski PM
    Neural Comput Appl; 2023; 35(23):16805-16819. PubMed ID: 37455836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Representing high-dimensional data to intelligent prostheses and other wearable assistive robots: A first comparison of tile coding and selective Kanerva coding.
    Travnik JB; Pilarski PM
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1443-1450. PubMed ID: 28814023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The future of Cochrane Neonatal.
    Soll RF; Ovelman C; McGuire W
    Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intelligent Robotics Incorporating Machine Learning Algorithms for Improving Functional Capacity Evaluation and Occupational Rehabilitation.
    Fong J; Ocampo R; Gross DP; Tavakoli M
    J Occup Rehabil; 2020 Sep; 30(3):362-370. PubMed ID: 32253595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wearable Assistive Robotics: A Perspective on Current Challenges and Future Trends.
    Martinez-Hernandez U; Metcalfe B; Assaf T; Jabban L; Male J; Zhang D
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34695964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Systematic Study on Electromyography-Based Hand Gesture Recognition for Assistive Robots Using Deep Learning and Machine Learning Models.
    Gopal P; Gesta A; Mohebbi A
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [New technologies and robotics].
    Kruppa C; Benner S; Brinkemper A; Aach M; Reimertz C; Schildhauer TA
    Unfallchirurgie (Heidelb); 2023 Jan; 126(1):9-18. PubMed ID: 36515725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexible Electronics and Devices as Human-Machine Interfaces for Medical Robotics.
    Heng W; Solomon S; Gao W
    Adv Mater; 2022 Apr; 34(16):e2107902. PubMed ID: 34897836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A qualitative systematic review of internal and external influences on shared decision-making in all health care settings.
    Truglio-Londrigan M; Slyer JT; Singleton JK; Worral P
    JBI Libr Syst Rev; 2012; 10(58):4633-4646. PubMed ID: 27820528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards achieving interorganisational collaboration between health-care providers: a realist evidence synthesis.
    Millar R; Aunger JA; Rafferty AM; Greenhalgh J; Mannion R; McLeod H; Faulks D
    Health Soc Care Deliv Res; 2023 Jun; 11(6):1-130. PubMed ID: 37469292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosignal-Based Human-Machine Interfaces for Assistance and Rehabilitation: A Survey.
    Esposito D; Centracchio J; Andreozzi E; Gargiulo GD; Naik GR; Bifulco P
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34696076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. What Turns Assistive into Restorative Brain-Machine Interfaces?
    Gharabaghi A
    Front Neurosci; 2016; 10():456. PubMed ID: 27790085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EMG-driven shared human-robot compliant control for in-hand object manipulation in hand prostheses.
    Khadivar F; Mendez V; Correia C; Batzianoulis I; Billard A; Micera S
    J Neural Eng; 2022 Dec; 19(6):. PubMed ID: 36384035
    [No Abstract]   [Full Text] [Related]  

  • 14. COHUMAIN: Building the Socio-Cognitive Architecture of Collective Human-Machine Intelligence.
    Gonzalez C; Admoni H; Brown S; Woolley AW
    Top Cogn Sci; 2023 Jun; ():. PubMed ID: 37331024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Human-Robot Interaction Perspective on Assistive and Rehabilitation Robotics.
    Beckerle P; Salvietti G; Unal R; Prattichizzo D; Rossi S; Castellini C; Hirche S; Endo S; Amor HB; Ciocarlie M; Mastrogiovanni F; Argall BD; Bianchi M
    Front Neurorobot; 2017; 11():24. PubMed ID: 28588473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human-machine-human interaction in motor control and rehabilitation: a review.
    Küçüktabak EB; Kim SJ; Wen Y; Lynch K; Pons JL
    J Neuroeng Rehabil; 2021 Dec; 18(1):183. PubMed ID: 34961530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enriching Communicative Environments: Leveraging Advances in Neuroplasticity for Improving Outcomes in Neurogenic Communication Disorders.
    Hengst JA; Duff MC; Jones TA
    Am J Speech Lang Pathol; 2019 Mar; 28(1S):216-229. PubMed ID: 30453323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Art, Design and Communication Theory in Creating the Communicative Social Robot 'Haru'.
    Sandry E; Gomez R; Nakamura K
    Front Robot AI; 2021; 8():577107. PubMed ID: 33816565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning to teleoperate an upper-limb assistive humanoid robot for bimanual daily-living tasks.
    Connan M; Sierotowicz M; Henze B; Porges O; Albu-Schäffer A; Roa MA; Castellini C
    Biomed Phys Eng Express; 2021 Dec; 8(1):. PubMed ID: 34757953
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.