These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 37455862)
1. Bioretention Cells Provide a 10-Fold Reduction in 6PPD-Quinone Mass Loadings to Receiving Waters: Evidence from a Field Experiment and Modeling. Rodgers TFM; Wang Y; Humes C; Jeronimo M; Johannessen C; Spraakman S; Giang A; Scholes RC Environ Sci Technol Lett; 2023 Jul; 10(7):582-588. PubMed ID: 37455862 [TBL] [Abstract][Full Text] [Related]
2. Watershed analysis of urban stormwater contaminant 6PPD-Quinone hotspots and stream concentrations using a process-based ecohydrological model. Halama JJ; McKane RB; Barnhart BL; Pettus PP; Brookes AF; Adams AK; Gockel CK; Djang KS; Phan V; Chokshi SM; Graham JJ; Tian Z; Peter KT; Kolodziej EP Front Environ Sci; 2024 Mar; 12():1-12. PubMed ID: 38845698 [TBL] [Abstract][Full Text] [Related]
3. Precipitation contributes to alleviating pollution of rubber-derived chemicals in receiving watersheds: Combining confluent stormwater runoff from different functional areas. Liu YH; Mei YX; Wang JY; Chen SS; Chen JL; Li N; Liu WR; Zhao JL; Zhang QQ; Ying GG Water Res; 2024 Oct; 264():122240. PubMed ID: 39146854 [TBL] [Abstract][Full Text] [Related]
4. Tire-derived contaminants 6PPD and 6PPD-Q: Analysis, sample handling, and reconnaissance of United States stream exposures. Lane RF; Smalling KL; Bradley PM; Greer JB; Gordon SE; Hansen JD; Kolpin DW; Spanjer AR; Masoner JR Chemosphere; 2024 Sep; 363():142830. PubMed ID: 39002655 [TBL] [Abstract][Full Text] [Related]
5. Bioretention filtration prevents acute mortality and reduces chronic toxicity for early life stage coho salmon (Oncorhynchus kisutch) episodically exposed to urban stormwater runoff. McIntyre JK; Spromberg J; Cameron J; Incardona JP; Davis JW; Scholz NL Sci Total Environ; 2023 Dec; 902():165759. PubMed ID: 37495136 [TBL] [Abstract][Full Text] [Related]
6. Acute Toxicity of 6PPD-Quinone to Early Life Stage Juvenile Chinook (Oncorhynchus tshawytscha) and Coho (Oncorhynchus kisutch) Salmon. Lo BP; Marlatt VL; Liao X; Reger S; Gallilee C; Ross ARS; Brown TM Environ Toxicol Chem; 2023 Apr; 42(4):815-822. PubMed ID: 36692118 [TBL] [Abstract][Full Text] [Related]
7. A Review of Li Y; Zeng J; Liang Y; Zhao Y; Zhang S; Chen Z; Zhang J; Shen X; Wang J; Zhang Y; Sun Y Toxics; 2024 May; 12(6):. PubMed ID: 38922074 [TBL] [Abstract][Full Text] [Related]
8. Environmental concentrations of tire rubber-derived 6PPD-quinone alter CNS function in zebrafish larvae. Ricarte M; Prats E; Montemurro N; Bedrossiantz J; Bellot M; Gómez-Canela C; Raldúa D Sci Total Environ; 2023 Oct; 896():165240. PubMed ID: 37406704 [TBL] [Abstract][Full Text] [Related]
9. Concentrations of Tire Additive Chemicals and Tire Road Wear Particles in an Australian Urban Tributary. Rauert C; Charlton N; Okoffo ED; Stanton RS; Agua AR; Pirrung MC; Thomas KV Environ Sci Technol; 2022 Feb; 56(4):2421-2431. PubMed ID: 35099932 [TBL] [Abstract][Full Text] [Related]
10. Bioretention Design Modifications Increase the Simulated Capture of Hydrophobic and Hydrophilic Trace Organic Compounds. Rodgers TFM; Spraakman S; Wang Y; Johannessen C; Scholes RC; Giang A Environ Sci Technol; 2024 Mar; 58(12):5500-5511. PubMed ID: 38483320 [TBL] [Abstract][Full Text] [Related]
11. Analysis, environmental occurrence, fate and potential toxicity of tire wear compounds 6PPD and 6PPD-quinone. Chen X; He T; Yang X; Gan Y; Qing X; Wang J; Huang Y J Hazard Mater; 2023 Jun; 452():131245. PubMed ID: 36958160 [TBL] [Abstract][Full Text] [Related]
12. Acute Toxicity Testing of Pink Salmon (Oncorhynchus gorbuscha) with the Tire Rubber-Derived Chemical 6PPD-Quinone. Foldvik A; Kryuchkov F; Ulvan EM; Sandodden R; Kvingedal E Environ Toxicol Chem; 2024 Jun; 43(6):1332-1338. PubMed ID: 38651991 [TBL] [Abstract][Full Text] [Related]
13. Apical and mechanistic effects of 6PPD-quinone on different life-stages of the fathead minnow (Pimephales promelas). Anderson-Bain K; Roberts C; Kohlman E; Ji X; Alcaraz AJ; Miller J; Gangur-Powell T; Weber L; Janz D; Hecker M; Montina T; Brinkmann M; Wiseman S Comp Biochem Physiol C Toxicol Pharmacol; 2023 Sep; 271():109697. PubMed ID: 37451416 [TBL] [Abstract][Full Text] [Related]
14. The lethal and sublethal impacts of two tire rubber-derived chemicals on brook trout (Salvelinus fontinalis) fry and fingerlings. Philibert D; Stanton RS; Tang C; Stock NL; Benfey T; Pirrung M; de Jourdan B Chemosphere; 2024 Jul; 360():142319. PubMed ID: 38735497 [TBL] [Abstract][Full Text] [Related]
15. Investigation of 6PPD-Quinone in Rubberized Asphalt Concrete Mixtures. Lokesh S; Arunthavabalan S; Hajj E; Hitti E; Yang Y ACS Environ Au; 2023 Nov; 3(6):336-341. PubMed ID: 38028740 [TBL] [Abstract][Full Text] [Related]
16. Concentration and leachability of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) and its quinone transformation product (6PPD-Q) in road dust collected in Tokyo, Japan. Hiki K; Yamamoto H Environ Pollut; 2022 Jun; 302():119082. PubMed ID: 35245619 [TBL] [Abstract][Full Text] [Related]
17. Mitigating tire wear particles and tire additive chemicals in stormwater with permeable pavements. Mitchell CJ; Jayakaran AD Sci Total Environ; 2024 Jan; 908():168236. PubMed ID: 37939940 [TBL] [Abstract][Full Text] [Related]
18. Development and application of diffusive gradients in thin-films for in-situ monitoring of 6PPD-Quinone in urban waters. Ren S; Xia Y; Wang X; Zou Y; Li Z; Man M; Yang Q; Lv M; Ding J; Chen L Water Res; 2024 Nov; 266():122408. PubMed ID: 39260193 [TBL] [Abstract][Full Text] [Related]
19. The joint effects of salt and 6PPD contamination on a freshwater herbivore. Klauschies T; Isanta-Navarro J Sci Total Environ; 2022 Jul; 829():154675. PubMed ID: 35314241 [TBL] [Abstract][Full Text] [Related]
20. Widespread Occurrence and Transport of Zeng L; Li Y; Sun Y; Liu LY; Shen M; Du B Environ Sci Technol; 2023 Feb; 57(6):2393-2403. PubMed ID: 36720114 [No Abstract] [Full Text] [Related] [Next] [New Search]