These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 37455955)
1. A deep learning-based framework for predicting survival-associated groups in colon cancer by integrating multi-omics and clinical data. Salimy S; Lanjanian H; Abbasi K; Salimi M; Najafi A; Tapak L; Masoudi-Nejad A Heliyon; 2023 Jul; 9(7):e17653. PubMed ID: 37455955 [TBL] [Abstract][Full Text] [Related]
2. Survival prediction in patients with colon adenocarcinoma via multi-omics data integration using a deep learning algorithm. Lv J; Wang J; Shang X; Liu F; Guo S Biosci Rep; 2020 Dec; 40(12):. PubMed ID: 33258470 [TBL] [Abstract][Full Text] [Related]
3. Survival stratification for colorectal cancer via multi-omics integration using an autoencoder-based model. Song H; Ruan C; Xu Y; Xu T; Fan R; Jiang T; Cao M; Song J Exp Biol Med (Maywood); 2022 Jun; 247(11):898-909. PubMed ID: 34904882 [TBL] [Abstract][Full Text] [Related]
4. Deep learning based feature-level integration of multi-omics data for breast cancer patients survival analysis. Tong L; Mitchel J; Chatlin K; Wang MD BMC Med Inform Decis Mak; 2020 Sep; 20(1):225. PubMed ID: 32933515 [TBL] [Abstract][Full Text] [Related]
5. A hierarchical integration deep flexible neural forest framework for cancer subtype classification by integrating multi-omics data. Xu J; Wu P; Chen Y; Meng Q; Dawood H; Dawood H BMC Bioinformatics; 2019 Oct; 20(1):527. PubMed ID: 31660856 [TBL] [Abstract][Full Text] [Related]
6. Integrating multi-omics data through deep learning for accurate cancer prognosis prediction. Chai H; Zhou X; Zhang Z; Rao J; Zhao H; Yang Y Comput Biol Med; 2021 Jul; 134():104481. PubMed ID: 33989895 [TBL] [Abstract][Full Text] [Related]
7. Deep learning-based model for predicting progression in patients with head and neck squamous cell carcinoma. Zhao Z; Li Y; Wu Y; Chen R Cancer Biomark; 2020; 27(1):19-28. PubMed ID: 31658045 [TBL] [Abstract][Full Text] [Related]
8. Capturing the latent space of an Autoencoder for multi-omics integration and cancer subtyping. Madhumita ; Paul S Comput Biol Med; 2022 Sep; 148():105832. PubMed ID: 35834966 [TBL] [Abstract][Full Text] [Related]
9. Deep Learning-Based Multi-Omics Integration Robustly Predicts Survival in Liver Cancer. Chaudhary K; Poirion OB; Lu L; Garmire LX Clin Cancer Res; 2018 Mar; 24(6):1248-1259. PubMed ID: 28982688 [TBL] [Abstract][Full Text] [Related]
10. Bidirectional deep neural networks to integrate RNA and DNA data for predicting outcome for patients with hepatocellular carcinoma. Huang G; Wang C; Fu X Future Oncol; 2021 Nov; 17(33):4481-4495. PubMed ID: 34374301 [TBL] [Abstract][Full Text] [Related]
11. Predicting Deep Learning Based Multi-Omics Parallel Integration Survival Subtypes in Lung Cancer Using Reverse Phase Protein Array Data. Takahashi S; Asada K; Takasawa K; Shimoyama R; Sakai A; Bolatkan A; Shinkai N; Kobayashi K; Komatsu M; Kaneko S; Sese J; Hamamoto R Biomolecules; 2020 Oct; 10(10):. PubMed ID: 33086649 [TBL] [Abstract][Full Text] [Related]
12. Multi-omics facilitated variable selection in Cox-regression model for cancer prognosis prediction. Liu C; Wang X; Genchev GZ; Lu H Methods; 2017 Jul; 124():100-107. PubMed ID: 28627406 [TBL] [Abstract][Full Text] [Related]
13. A multi-omics machine learning framework in predicting the survival of colorectal cancer patients. Yang M; Yang H; Ji L; Hu X; Tian G; Wang B; Yang J Comput Biol Med; 2022 Jul; 146():105516. PubMed ID: 35468406 [TBL] [Abstract][Full Text] [Related]
14. Deep learning-based ovarian cancer subtypes identification using multi-omics data. Guo LY; Wu AH; Wang YX; Zhang LP; Chai H; Liang XF BioData Min; 2020; 13():10. PubMed ID: 32863885 [TBL] [Abstract][Full Text] [Related]
15. Min-redundancy and max-relevance multi-view feature selection for predicting ovarian cancer survival using multi-omics data. El-Manzalawy Y; Hsieh TY; Shivakumar M; Kim D; Honavar V BMC Med Genomics; 2018 Sep; 11(Suppl 3):71. PubMed ID: 30255801 [TBL] [Abstract][Full Text] [Related]
16. Incorporating deep learning and multi-omics autoencoding for analysis of lung adenocarcinoma prognostication. Lee TY; Huang KY; Chuang CH; Lee CY; Chang TH Comput Biol Chem; 2020 May; 87():107277. PubMed ID: 32512487 [TBL] [Abstract][Full Text] [Related]
17. A multi-omics supervised autoencoder for pan-cancer clinical outcome endpoints prediction. Tan K; Huang W; Hu J; Dong S BMC Med Inform Decis Mak; 2020 Jul; 20(Suppl 3):129. PubMed ID: 32646413 [TBL] [Abstract][Full Text] [Related]
18. Performance Comparison of Deep Learning Autoencoders for Cancer Subtype Detection Using Multi-Omics Data. Franco EF; Rana P; Cruz A; Calderón VV; Azevedo V; Ramos RTJ; Ghosh P Cancers (Basel); 2021 Apr; 13(9):. PubMed ID: 33921978 [TBL] [Abstract][Full Text] [Related]
19. Integrating multi-omics data by learning modality invariant representations for improved prediction of overall survival of cancer. Tong L; Wu H; Wang MD Methods; 2021 May; 189():74-85. PubMed ID: 32763377 [TBL] [Abstract][Full Text] [Related]
20. A fair experimental comparison of neural network architectures for latent representations of multi-omics for drug response prediction. Hauptmann T; Kramer S BMC Bioinformatics; 2023 Feb; 24(1):45. PubMed ID: 36788531 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]