These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 37456778)

  • 1. Asymmetric trichotomous partitioning overcomes dataset limitations in building machine learning models for predicting siRNA efficacy.
    Monopoli KR; Korkin D; Khvorova A
    Mol Ther Nucleic Acids; 2023 Sep; 33():93-109. PubMed ID: 37456778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From sequences to therapeutics: Using machine learning to predict chemically modified siRNA activity.
    Martinelli DD
    Genomics; 2024 Mar; 116(2):110815. PubMed ID: 38431033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RFRCDB-siRNA: improved design of siRNAs by random forest regression model coupled with database searching.
    Jiang P; Wu H; Da Y; Sang F; Wei J; Sun X; Lu Z
    Comput Methods Programs Biomed; 2007 Sep; 87(3):230-8. PubMed ID: 17644215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparing artificial neural networks, general linear models and support vector machines in building predictive models for small interfering RNAs.
    McQuisten KA; Peek AS
    PLoS One; 2009 Oct; 4(10):e7522. PubMed ID: 19847297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Informatics approach to the rational design of siRNA libraries.
    Ebalunode JO; Jagun C; Zheng W
    Methods Mol Biol; 2011; 672():341-58. PubMed ID: 20838976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Re-Engineering RNA Molecules into Therapeutic Agents.
    Egli M; Manoharan M
    Acc Chem Res; 2019 Apr; 52(4):1036-1047. PubMed ID: 30912917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MysiRNA: improving siRNA efficacy prediction using a machine-learning model combining multi-tools and whole stacking energy (ΔG).
    Mysara M; Elhefnawi M; Garibaldi JM
    J Biomed Inform; 2012 Jun; 45(3):528-34. PubMed ID: 22388012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional features defining the efficacy of cholesterol-conjugated, self-deliverable, chemically modified siRNAs.
    Shmushkovich T; Monopoli KR; Homsy D; Leyfer D; Betancur-Boissel M; Khvorova A; Wolfson AD
    Nucleic Acids Res; 2018 Nov; 46(20):10905-10916. PubMed ID: 30169779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cm-siRPred: Predicting chemically modified siRNA efficiency based on multi-view learning strategy.
    Liu T; Huang J; Luo D; Ren L; Ning L; Huang J; Lin H; Zhang Y
    Int J Biol Macromol; 2024 Apr; 264(Pt 2):130638. PubMed ID: 38460652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Soft computing model for optimized siRNA design by identifying off target possibilities using artificial neural network model.
    Murali R; John PG; Peter S D
    Gene; 2015 May; 562(2):152-8. PubMed ID: 25725126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting the efficacy of short oligonucleotides in antisense and RNAi experiments with boosted genetic programming.
    Saetrom P
    Bioinformatics; 2004 Nov; 20(17):3055-63. PubMed ID: 15201190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An accurate and interpretable model for siRNA efficacy prediction.
    Vert JP; Foveau N; Lajaunie C; Vandenbrouck Y
    BMC Bioinformatics; 2006 Nov; 7():520. PubMed ID: 17137497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational models with thermodynamic and composition features improve siRNA design.
    Shabalina SA; Spiridonov AN; Ogurtsov AY
    BMC Bioinformatics; 2006 Feb; 7():65. PubMed ID: 16472402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning algorithms for outcome prediction in (chemo)radiotherapy: An empirical comparison of classifiers.
    Deist TM; Dankers FJWM; Valdes G; Wijsman R; Hsu IC; Oberije C; Lustberg T; van Soest J; Hoebers F; Jochems A; El Naqa I; Wee L; Morin O; Raleigh DR; Bots W; Kaanders JH; Belderbos J; Kwint M; Solberg T; Monshouwer R; Bussink J; Dekker A; Lambin P
    Med Phys; 2018 Jul; 45(7):3449-3459. PubMed ID: 29763967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cheminformatics Approach to Gene Silencing: Z Descriptors of Nucleotides and SVM Regression Afford Predictive Models for siRNA Potency.
    Ebalunode JO; Zheng W
    Mol Inform; 2010 Dec; 29(12):871-81. PubMed ID: 27464351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A framework for multiple kernel support vector regression and its applications to siRNA efficacy prediction.
    Qiu S; Lane T
    IEEE/ACM Trans Comput Biol Bioinform; 2009; 6(2):190-9. PubMed ID: 19407344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LANDMark: an ensemble approach to the supervised selection of biomarkers in high-throughput sequencing data.
    Rudar J; Porter TM; Wright M; Golding GB; Hajibabaei M
    BMC Bioinformatics; 2022 Mar; 23(1):110. PubMed ID: 35361114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of novel mouse TLR9 agonists using a random forest approach.
    Khanna V; Li L; Fung J; Ranganathan S; Petrovsky N
    BMC Mol Cell Biol; 2019 Dec; 20(Suppl 2):56. PubMed ID: 31856726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BERT-siRNA: siRNA target prediction based on BERT pre-trained interpretable model.
    Xu J; Xu N; Xie W; Zhao C; Yu L; Feng W
    Gene; 2024 Jun; 910():148330. PubMed ID: 38431236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Graph Neural Network Approach for the Analysis of siRNA-Target Biological Networks.
    La Rosa M; Fiannaca A; La Paglia L; Urso A
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.