These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 37456778)

  • 21. VIRsiRNApred: a web server for predicting inhibition efficacy of siRNAs targeting human viruses.
    Qureshi A; Thakur N; Kumar M
    J Transl Med; 2013 Dec; 11():305. PubMed ID: 24330765
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Demonstration of two novel methods for predicting functional siRNA efficiency.
    Jia P; Shi T; Cai Y; Li Y
    BMC Bioinformatics; 2006 May; 7():271. PubMed ID: 16729898
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Application of supervised machine learning algorithms for classification and prediction of type-2 diabetes disease status in Afar regional state, Northeastern Ethiopia 2021.
    Ebrahim OA; Derbew G
    Sci Rep; 2023 May; 13(1):7779. PubMed ID: 37179444
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of regions flanking target site on siRNA potency.
    Liu L; Li QZ; Lin H; Zuo YC
    Genomics; 2013 Oct; 102(4):215-22. PubMed ID: 23891614
    [TBL] [Abstract][Full Text] [Related]  

  • 25. SiRNA silencing efficacy prediction based on a deep architecture.
    Han Y; He F; Chen Y; Liu Y; Yu H
    BMC Genomics; 2018 Sep; 19(Suppl 7):669. PubMed ID: 30255786
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improved nucleic acid descriptors for siRNA efficacy prediction.
    Sciabola S; Cao Q; Orozco M; Faustino I; Stanton RV
    Nucleic Acids Res; 2013 Feb; 41(3):1383-94. PubMed ID: 23241392
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Using machine learning to realize genetic site screening and genomic prediction of productive traits in pigs.
    Xiang T; Li T; Li J; Li X; Wang J
    FASEB J; 2023 Jun; 37(6):e22961. PubMed ID: 37178007
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kernel-imbedded Gaussian processes for disease classification using microarray gene expression data.
    Zhao X; Cheung LW
    BMC Bioinformatics; 2007 Feb; 8():67. PubMed ID: 17328811
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Designing of highly effective complementary and mismatch siRNAs for silencing a gene.
    Ahmed F; Raghava GP
    PLoS One; 2011; 6(8):e23443. PubMed ID: 21853133
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Machine learning algorithm for precise prediction of 2'-O-methylation (Nm) sites from experimental RiboMethSeq datasets.
    Pichot F; Marchand V; Helm M; Motorin Y
    Methods; 2022 Jul; 203():311-321. PubMed ID: 35314341
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Direct Comparison of the Prediction of the Unbound Brain-to-Plasma Partitioning Utilizing Machine Learning Approach and Mechanistic Neuropharmacokinetic Model.
    Kosugi Y; Mizuno K; Santos C; Sato S; Hosea N; Zientek M
    AAPS J; 2021 May; 23(4):72. PubMed ID: 34008121
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Error Tolerance of Machine Learning Algorithms across Contemporary Biological Targets.
    Kaiser TM; Burger PB
    Molecules; 2019 Jun; 24(11):. PubMed ID: 31167452
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Accurate Prediction of Coronary Heart Disease for Patients With Hypertension From Electronic Health Records With Big Data and Machine-Learning Methods: Model Development and Performance Evaluation.
    Du Z; Yang Y; Zheng J; Li Q; Lin D; Li Y; Fan J; Cheng W; Chen XH; Cai Y
    JMIR Med Inform; 2020 Jul; 8(7):e17257. PubMed ID: 32628616
    [TBL] [Abstract][Full Text] [Related]  

  • 34. NeRNA: A negative data generation framework for machine learning applications of noncoding RNAs.
    Orhan ME; Demirci YM; Saçar Demirci MD
    Comput Biol Med; 2023 Jun; 159():106861. PubMed ID: 37075604
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A multicenter random forest model for effective prognosis prediction in collaborative clinical research network.
    Li J; Tian Y; Zhu Y; Zhou T; Li J; Ding K; Li J
    Artif Intell Med; 2020 Mar; 103():101814. PubMed ID: 32143809
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transient protein-protein interface prediction: datasets, features, algorithms, and the RAD-T predictor.
    Bendell CJ; Liu S; Aumentado-Armstrong T; Istrate B; Cernek PT; Khan S; Picioreanu S; Zhao M; Murgita RA
    BMC Bioinformatics; 2014 Mar; 15():82. PubMed ID: 24661439
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chemical and structural modifications of RNAi therapeutics.
    Ku SH; Jo SD; Lee YK; Kim K; Kim SH
    Adv Drug Deliv Rev; 2016 Sep; 104():16-28. PubMed ID: 26549145
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction?
    Anderson AB; Grazal CF; Balazs GC; Potter BK; Dickens JF; Forsberg JA
    Clin Orthop Relat Res; 2020 Jul; 478(7):0-1618. PubMed ID: 32282466
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Utilizing Selected Di- and Trinucleotides of siRNA to Predict RNAi Activity.
    Han Y; Liu Y; Zhang H; He F; Shu C; Dong L
    Comput Math Methods Med; 2017; 2017():5043984. PubMed ID: 28243313
    [TBL] [Abstract][Full Text] [Related]  

  • 40. SMEpred workbench: A web server for predicting efficacy of chemicallymodified siRNAs.
    Dar SA; Gupta AK; Thakur A; Kumar M
    RNA Biol; 2016 Nov; 13(11):1144-1151. PubMed ID: 27603513
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.