These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 37456778)

  • 41. How to approach machine learning-based prediction of drug/compound-target interactions.
    Atas Guvenilir H; Doğan T
    J Cheminform; 2023 Feb; 15(1):16. PubMed ID: 36747300
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Designing highly active siRNAs for therapeutic applications.
    Walton SP; Wu M; Gredell JA; Chan C
    FEBS J; 2010 Dec; 277(23):4806-13. PubMed ID: 21078115
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Improving model predictions for RNA interference activities that use support vector machine regression by combining and filtering features.
    Peek AS
    BMC Bioinformatics; 2007 Jun; 8():182. PubMed ID: 17553157
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A comparison of siRNA efficacy predictors.
    Saetrom P; Snøve O
    Biochem Biophys Res Commun; 2004 Aug; 321(1):247-53. PubMed ID: 15358242
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Predicting siRNA potency with random forests and support vector machines.
    Wang L; Huang C; Yang JY
    BMC Genomics; 2010 Dec; 11 Suppl 3(Suppl 3):S2. PubMed ID: 21143784
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Predicting speech discrimination scores from pure-tone thresholds-A machine learning-based approach using data from 12,697 subjects.
    Kim H; Park J; Choung YH; Jang JH; Ko J
    PLoS One; 2021; 16(12):e0261433. PubMed ID: 34972151
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Reconsideration of in-silico siRNA design based on feature selection: a cross-platform data integration perspective.
    Liu Q; Zhou H; Cui J; Cao Z; Xu Y
    PLoS One; 2012; 7(5):e37879. PubMed ID: 22655076
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Combining handcrafted features with latent variables in machine learning for prediction of radiation-induced lung damage.
    Cui S; Luo Y; Tseng HH; Ten Haken RK; El Naqa I
    Med Phys; 2019 May; 46(5):2497-2511. PubMed ID: 30891794
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Approximate Bayesian feature selection on a large meta-dataset offers novel insights on factors that effect siRNA potency.
    Klingelhoefer JW; Moutsianas L; Holmes C
    Bioinformatics; 2009 Jul; 25(13):1594-601. PubMed ID: 19420052
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Selecting effective siRNA sequences by using radial basis function network and decision tree learning.
    Takasaki S; Kawamura Y; Konagaya A
    BMC Bioinformatics; 2006 Dec; 7 Suppl 5(Suppl 5):S22. PubMed ID: 17254307
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A computational model for compressed sensing RNAi cellular screening.
    Tan H; Fan J; Bao J; Dy JG; Zhou X
    BMC Bioinformatics; 2012 Dec; 13():337. PubMed ID: 23270311
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Identifying the minimum amplicon sequence depth to adequately predict classes in eDNA-based marine biomonitoring using supervised machine learning.
    Dully V; Wilding TA; Mühlhaus T; Stoeck T
    Comput Struct Biotechnol J; 2021; 19():2256-2268. PubMed ID: 33995917
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Efficient prediction methods for selecting effective siRNA sequences.
    Takasaki S
    Comput Biol Med; 2010 Feb; 40(2):149-58. PubMed ID: 20022002
    [TBL] [Abstract][Full Text] [Related]  

  • 54. RFMirTarget: predicting human microRNA target genes with a random forest classifier.
    Mendoza MR; da Fonseca GC; Loss-Morais G; Alves R; Margis R; Bazzan AL
    PLoS One; 2013; 8(7):e70153. PubMed ID: 23922946
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Methodology to identify a gene expression signature by merging microarray datasets.
    Fajarda O; Almeida JR; Duarte-Pereira S; Silva RM; Oliveira JL
    Comput Biol Med; 2023 Jun; 159():106867. PubMed ID: 37060770
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Machine learning approach to gene essentiality prediction: a review.
    Aromolaran O; Aromolaran D; Isewon I; Oyelade J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33842944
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Machine Learning Hybrid Model for the Prediction of Chronic Kidney Disease.
    Khalid H; Khan A; Zahid Khan M; Mehmood G; Shuaib Qureshi M
    Comput Intell Neurosci; 2023; 2023():9266889. PubMed ID: 36959840
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Comparative Study on Supervised Machine Learning Algorithms for Copper Recovery Quality Prediction in a Leaching Process.
    Flores V; Leiva C
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33803046
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evaluation of Machine Learning Techniques for Traffic Flow-Based Intrusion Detection.
    Rodríguez M; Alesanco Á; Mehavilla L; García J
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36502028
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Tutorial: Applying Machine Learning in Behavioral Research.
    Turgeon S; Lanovaz MJ
    Perspect Behav Sci; 2020 Dec; 43(4):697-723. PubMed ID: 33381685
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.