These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 37456808)

  • 41. To eat or to sleep? Orexin in the regulation of feeding and wakefulness.
    Willie JT; Chemelli RM; Sinton CM; Yanagisawa M
    Annu Rev Neurosci; 2001; 24():429-58. PubMed ID: 11283317
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Hypothalamic neuropeptides implicated in the regulation of sleep/wakefulness states].
    Sakurai T
    Brain Nerve; 2012 Jun; 64(6):629-37. PubMed ID: 22647470
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The role of hypocretins (orexins) in sleep regulation and narcolepsy.
    Taheri S; Zeitzer JM; Mignot E
    Annu Rev Neurosci; 2002; 25():283-313. PubMed ID: 12052911
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The sleep-wake cycle, the hypocretin/orexin system and narcolepsy: advances from preclinical research to treatment.
    Arias-Carrión O; Bradbury M
    CNS Neurol Disord Drug Targets; 2009 Aug; 8(4):232-4. PubMed ID: 19689304
    [TBL] [Abstract][Full Text] [Related]  

  • 45. GABAergic neurons in the preoptic area send direct inhibitory projections to orexin neurons.
    Saito YC; Tsujino N; Hasegawa E; Akashi K; Abe M; Mieda M; Sakimura K; Sakurai T
    Front Neural Circuits; 2013; 7():192. PubMed ID: 24348342
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ectopic overexpression of orexin alters sleep/wakefulness states and muscle tone regulation during REM sleep in mice.
    Willie JT; Takahira H; Shibahara M; Hara J; Nomiyama M; Yanagisawa M; Sakurai T
    J Mol Neurosci; 2011 Feb; 43(2):155-61. PubMed ID: 20711757
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Serotonergic Input to Orexin Neurons Plays a Role in Maintaining Wakefulness and REM Sleep Architecture.
    Saito YC; Tsujino N; Abe M; Yamazaki M; Sakimura K; Sakurai T
    Front Neurosci; 2018; 12():892. PubMed ID: 30555297
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Microinjection of the dopamine D2-receptor antagonist Raclopride into the medial preoptic area reduces REM sleep in lactating rats.
    Benedetto L; Rivas M; Cavelli M; Peña F; Monti J; Ferreira A; Torterolo P
    Neurosci Lett; 2017 Oct; 659():104-109. PubMed ID: 28870629
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Influence of inhibitory serotonergic inputs to orexin/hypocretin neurons on the diurnal rhythm of sleep and wakefulness.
    Tabuchi S; Tsunematsu T; Kilduff TS; Sugio S; Xu M; Tanaka KF; Takahashi S; Tominaga M; Yamanaka A
    Sleep; 2013 Sep; 36(9):1391-404. PubMed ID: 23997373
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Altered sleep homeostasis after restraint stress in 5-HTT knock-out male mice: a role for hypocretins.
    Rachalski A; Alexandre C; Bernard JF; Saurini F; Lesch KP; Hamon M; Adrien J; Fabre V
    J Neurosci; 2009 Dec; 29(49):15575-85. PubMed ID: 20007481
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Neuronal STAT5 signaling is required for maintaining lactation but not for postpartum maternal behaviors in mice.
    Buonfiglio DC; Ramos-Lobo AM; Silveira MA; Furigo IC; Hennighausen L; Frazão R; Donato J
    Horm Behav; 2015 May; 71():60-8. PubMed ID: 25896118
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Hypocretin (orexin) immunoreactivity in the feline midbrain: Relevance for the generation of wakefulness.
    Costa A; Monti J; Torterolo P
    J Chem Neuroanat; 2020 Apr; 105():101769. PubMed ID: 32145304
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [The neurotransmitter, hypocretin. An overview].
    Baumann C; Bassetti C
    Nervenarzt; 2004 Apr; 75(4):317-23. PubMed ID: 15088087
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The role of orexin neuron activity in sleep/wakefulness regulation.
    Hung C; Yamanaka A
    Peptides; 2023 Jul; 165():171007. PubMed ID: 37030519
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hypothalamic regulation of the sleep/wake cycle.
    Ono D; Yamanaka A
    Neurosci Res; 2017 May; 118():74-81. PubMed ID: 28526553
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The sleep switch: hypothalamic control of sleep and wakefulness.
    Saper CB; Chou TC; Scammell TE
    Trends Neurosci; 2001 Dec; 24(12):726-31. PubMed ID: 11718878
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hypothalamic orexins/hypocretins as regulators of breathing.
    Williams RH; Burdakov D
    Expert Rev Mol Med; 2008 Oct; 10():e28. PubMed ID: 18828950
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Orexin neuronal circuitry: role in the regulation of sleep and wakefulness.
    Ohno K; Sakurai T
    Front Neuroendocrinol; 2008 Jan; 29(1):70-87. PubMed ID: 17910982
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fos expression in orexin neurons varies with behavioral state.
    Estabrooke IV; McCarthy MT; Ko E; Chou TC; Chemelli RM; Yanagisawa M; Saper CB; Scammell TE
    J Neurosci; 2001 Mar; 21(5):1656-62. PubMed ID: 11222656
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Orexins (hypocretins) directly excite tuberomammillary neurons.
    Bayer L; Eggermann E; Serafin M; Saint-Mleux B; Machard D; Jones B; Mühlethaler M
    Eur J Neurosci; 2001 Nov; 14(9):1571-5. PubMed ID: 11722619
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.