These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 37456896)

  • 21. Effect of vasti morphology on peak sprint cycling power of a human musculoskeletal simulation model.
    Bobbert MF; Casius LJR; van der Zwaard S; Jaspers RT
    J Appl Physiol (1985); 2020 Feb; 128(2):445-455. PubMed ID: 31854247
    [TBL] [Abstract][Full Text] [Related]  

  • 22. MCT1 A1470T: a novel polymorphism for sprint performance?
    Sawczuk M; Banting LK; Cięszczyk P; Maciejewska-Karłowska A; Zarębska A; Leońska-Duniec A; Jastrzębski Z; Bishop DJ; Eynon N
    J Sci Med Sport; 2015 Jan; 18(1):114-8. PubMed ID: 24485392
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neural, metabolic, and performance adaptations to four weeks of high intensity sprint-interval training in trained cyclists.
    Creer AR; Ricard MD; Conlee RK; Hoyt GL; Parcell AC
    Int J Sports Med; 2004 Feb; 25(2):92-8. PubMed ID: 14986190
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Countermovement jump variables not tensiomyography can distinguish between sprint and endurance focused track cyclists.
    Lewis MD; Young WB; Knapstein L; Lavender A; Talpey SW
    Biol Sport; 2022 Jan; 39(1):67-72. PubMed ID: 35173365
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The anaerobic power reserve and its applicability in professional road cycling.
    Sanders D; Heijboer M
    J Sports Sci; 2019 Mar; 37(6):621-629. PubMed ID: 30317920
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Torque and power-velocity relationships in cycling: relevance to track sprint performance in world-class cyclists.
    Dorel S; Hautier CA; Rambaud O; Rouffet D; Van Praagh E; Lacour JR; Bourdin M
    Int J Sports Med; 2005 Nov; 26(9):739-46. PubMed ID: 16237619
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Maximal Sprint Power in Road Cyclists After Variable and Nonvariable High-Intensity Exercise.
    Menaspà P; Martin DT; Victor J; Abbiss CR
    J Strength Cond Res; 2015 Nov; 29(11):3156-61. PubMed ID: 25932988
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sprinting After Having Sprinted: Prior High-Intensity Stochastic Cycling Impairs the Winning Strike for Gold.
    Etxebarria N; Ingham SA; Ferguson RA; Bentley DJ; Pyne DB
    Front Physiol; 2019; 10():100. PubMed ID: 30837886
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Acute Effects of Sprint Interval Training and Chronic Effects of Polarized Training (Sprint Interval Training, High Intensity Interval Training, and Endurance Training) on Choice Reaction Time in Mountain Bike Cyclists.
    Hebisz P; Cortis C; Hebisz R
    Int J Environ Res Public Health; 2022 Nov; 19(22):. PubMed ID: 36429672
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sprint mechanical variables in elite athletes: Are force-velocity profiles sport specific or individual?
    Haugen TA; Breitschädel F; Seiler S
    PLoS One; 2019; 14(7):e0215551. PubMed ID: 31339890
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Aging has greater impact on anaerobic versus aerobic power in trained masters athletes.
    Gent DN; Norton K
    J Sports Sci; 2013; 31(1):97-103. PubMed ID: 22974317
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quasi-Isometric Cycling: A Case Study Investigation of a Novel Method to Augment Peak Power Output in Sprint Cycling.
    Kordi M; Evans M; Howatson G
    Int J Sports Physiol Perform; 2021 Mar; 16(3):452-455. PubMed ID: 32781439
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Force-velocity profiles of track cyclists differ between seated and non-seated positions.
    Dwyer DB; Molaro C; Rouffet DM
    Sports Biomech; 2023 Apr; 22(4):621-632. PubMed ID: 35758132
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sprinting for the Win: Distribution of Power Output in Women's Professional Cycling.
    Peiffer JJ; Abbiss CR; Haakonssen EC; Menaspà P
    Int J Sports Physiol Perform; 2018 Oct; 13(9):1237-1242. PubMed ID: 29688105
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Using Field Based Data to Model Sprint Track Cycling Performance.
    Ferguson HA; Harnish C; Chase JG
    Sports Med Open; 2021 Mar; 7(1):20. PubMed ID: 33725208
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Aerobic and anaerobic power characteristics of off-road cyclists.
    Baron R
    Med Sci Sports Exerc; 2001 Aug; 33(8):1387-93. PubMed ID: 11474343
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Power Profile of Top 5 Results in World Tour Cycling Races.
    van Erp T; Lamberts RP; Sanders D
    Int J Sports Physiol Perform; 2022 Feb; 17(2):203-209. PubMed ID: 34560671
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Field- and Laboratory-derived Power-Cadence Profiles in World-Class and Elite Track Sprint Cyclists.
    Wackwitz T; Minahan C; Menaspà P; Crampton M; Bellinger P
    J Sports Sci; 2023 Sep; 41(17):1635-1642. PubMed ID: 38049956
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mouth Rinsing and Ingestion of Unpleasant Salty or Bitter Solutions Does Not Improve Cycling Sprint Performance in Trained Cyclists.
    Gray EA; Cavaleri R; Siegler JC
    Int J Sport Nutr Exerc Metab; 2023 Nov; 33(6):316-322. PubMed ID: 37591506
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Repeated-sprint performance and plasma responses following beetroot juice supplementation do not differ between recreational, competitive and elite sprint athletes.
    Jonvik KL; Nyakayiru J; Van Dijk JW; Maase K; Ballak SB; Senden JMG; Van Loon LJC; Verdijk LB
    Eur J Sport Sci; 2018 May; 18(4):524-533. PubMed ID: 29412076
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.