These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 37457342)
1. Phylogenomic analysis provides insights into Xiong W; Risse J; Berke L; Zhao T; van de Geest H; Oplaat C; Busscher M; Ferreira de Carvalho J; van der Meer IM; Verhoeven KJF; Schranz ME; Vijverberg K Front Plant Sci; 2023; 14():1198909. PubMed ID: 37457342 [TBL] [Abstract][Full Text] [Related]
2. TCP and MADS-Box Transcription Factor Networks Regulate Heteromorphic Flower Type Identity in Zhao Y; Broholm SK; Wang F; Rijpkema AS; Lan T; Albert VA; Teeri TH; Elomaa P Plant Physiol; 2020 Nov; 184(3):1455-1468. PubMed ID: 32900982 [TBL] [Abstract][Full Text] [Related]
3. Nuclear phylogenomics of Asteraceae with increased sampling provides new insights into convergent morphological and molecular evolution. Zhang G; Yang J; Zhang C; Jiao B; Panero JL; Cai J; Zhang ZR; Gao LM; Gao T; Ma H Plant Commun; 2024 Jun; 5(6):100851. PubMed ID: 38409784 [TBL] [Abstract][Full Text] [Related]
4. Genome-Wide Identification MIKC-Type MADS-Box Gene Family and Their Roles during Development of Floral Buds in Wheel Wingnut ( Qu Y; Kong W; Wang Q; Fu X Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34576289 [TBL] [Abstract][Full Text] [Related]
5. Evolution and diversification of the CYC/TB1 gene family in Asteraceae--a comparative study in Gerbera (Mutisieae) and sunflower (Heliantheae). Tähtiharju S; Rijpkema AS; Vetterli A; Albert VA; Teeri TH; Elomaa P Mol Biol Evol; 2012 Apr; 29(4):1155-66. PubMed ID: 22101417 [TBL] [Abstract][Full Text] [Related]
6. Phylogenomic Synteny Network Analysis of MADS-Box Transcription Factor Genes Reveals Lineage-Specific Transpositions, Ancient Tandem Duplications, and Deep Positional Conservation. Zhao T; Holmer R; de Bruijn S; Angenent GC; van den Burg HA; Schranz ME Plant Cell; 2017 Jun; 29(6):1278-1292. PubMed ID: 28584165 [TBL] [Abstract][Full Text] [Related]
7. Dynamic evolution of MADS-box genes in extant ferns via large-scale phylogenomic analysis. Zhang R; Zhang J; Xu YX; Sun JM; Dai SJ; Shen H; Yan YH Front Plant Sci; 2024; 15():1410554. PubMed ID: 38974983 [TBL] [Abstract][Full Text] [Related]
8. Genome-wide analysis of the MADS-Box gene family in Chrysanthemum. Won SY; Jung JA; Kim JS Comput Biol Chem; 2021 Feb; 90():107424. PubMed ID: 33340990 [TBL] [Abstract][Full Text] [Related]
9. Functional and evolutionary analysis of the AP1/SEP/AGL6 superclade of MADS-box genes in the basal eudicot Epimedium sagittatum. Sun W; Huang W; Li Z; Song C; Liu D; Liu Y; Hayward A; Liu Y; Huang H; Wang Y Ann Bot; 2014 Mar; 113(4):653-68. PubMed ID: 24532606 [TBL] [Abstract][Full Text] [Related]
10. Patterns of MADS-box gene expression mark flower-type development in Gerbera hybrida (Asteraceae). Laitinen RA; Broholm S; Albert VA; Teeri TH; Elomaa P BMC Plant Biol; 2006 Jun; 6():11. PubMed ID: 16762082 [TBL] [Abstract][Full Text] [Related]
11. Novel members of the AGAMOUS LIKE 6 subfamily of MIKCC-type MADS-box genes in soybean. Wong CE; Singh MB; Bhalla PL BMC Plant Biol; 2013 Jul; 13():105. PubMed ID: 23870482 [TBL] [Abstract][Full Text] [Related]
12. The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Becker A; Theissen G Mol Phylogenet Evol; 2003 Dec; 29(3):464-89. PubMed ID: 14615187 [TBL] [Abstract][Full Text] [Related]
13. Genome-wide identification and classification of MIKC-type MADS-box genes in Streptophyte lineages and expression analyses to reveal their role in seed germination of orchid. He C; Si C; Teixeira da Silva JA; Li M; Duan J BMC Plant Biol; 2019 May; 19(1):223. PubMed ID: 31138149 [TBL] [Abstract][Full Text] [Related]
14. Genome-wide survey of potato MADS-box genes reveals that StMADS1 and StMADS13 are putative downstream targets of tuberigen StSP6A. Gao H; Wang Z; Li S; Hou M; Zhou Y; Zhao Y; Li G; Zhao H; Ma H BMC Genomics; 2018 Oct; 19(1):726. PubMed ID: 30285611 [TBL] [Abstract][Full Text] [Related]
15. Diversification of CYCLOIDEA-like genes in Dipsacaceae (Dipsacales): implications for the evolution of capitulum inflorescences. Carlson SE; Howarth DG; Donoghue MJ BMC Evol Biol; 2011 Nov; 11():325. PubMed ID: 22054400 [TBL] [Abstract][Full Text] [Related]
16. Expression and Functional Analyses of Moschin S; Nigris S; Ezquer I; Masiero S; Cagnin S; Cortese E; Colombo L; Casadoro G; Baldan B Front Plant Sci; 2021; 12():730270. PubMed ID: 34630477 [TBL] [Abstract][Full Text] [Related]
17. Ancestral and more recently acquired syntenic relationships of MADS-box genes uncovered by the Physcomitrella patens pseudochromosomal genome assembly. Barker EI; Ashton NW Plant Cell Rep; 2016 Mar; 35(3):505-12. PubMed ID: 26573679 [TBL] [Abstract][Full Text] [Related]
18. Comparative Analysis of the MADS-Box Genes Revealed Their Potential Functions for Flower and Fruit Development in Longan ( Wang B; Hu W; Fang Y; Feng X; Fang J; Zou T; Zheng S; Ming R; Zhang J Front Plant Sci; 2021; 12():813798. PubMed ID: 35154209 [TBL] [Abstract][Full Text] [Related]
19. Systematic analysis of MADS-box gene family in the U's triangle species and targeted mutagenesis of Song M; Zhang Y; Jia Q; Huang S; An R; Chen N; Zhu Y; Mu J; Hu S Front Plant Sci; 2022; 13():1115513. PubMed ID: 36714735 [TBL] [Abstract][Full Text] [Related]
20. MADS-box genes and floral development: the dark side. Heijmans K; Morel P; Vandenbussche M J Exp Bot; 2012 Sep; 63(15):5397-404. PubMed ID: 22915743 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]